This function is a wrapper for boot.ci
to derive
bootstrap-based confidence intervals from a "boot"
object.
confints.bootpls(bootobject, indices = NULL, typeBCa = TRUE)
bootobject | an object of class |
---|---|
indices | the indices of the predictor for which CIs should be
calculated. Defaults to |
typeBCa | shall BCa bootstrap based CI derived ? Defaults to
|
Matrix with the limits of bootstrap based CI for all (defaults) or
only the selected predictors (indices
option). The limits are given
in that order: Normal Lower then Upper Limit, Basic Lower then Upper Limit,
Percentile Lower then Upper Limit, BCa Lower then Upper Limit.
See also bootpls
and bootplsglm
.
Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
# \donttest{ data(Cornell) #Lazraq-Cleroux PLS (Y,X) bootstrap set.seed(250) modpls <- plsR(Y~.,data=Cornell,3)#> ____************************************************____ #> ____Component____ 1 ____ #> ____Component____ 2 ____ #> ____Component____ 3 ____ #> ____Predicting X without NA neither in X nor in Y____ #> ****________________________________________________**** #>#> Warning: extreme order statistics used as endpoints#> Warning: extreme order statistics used as endpoints#> Warning: extreme order statistics used as endpoints#> #> X1 -0.2305299 -0.03654653 -0.2146155 -0.01243502 -0.2657483 -0.063567788 #> X2 -0.3824730 -0.12056633 -0.4240731 -0.16474400 -0.2526435 0.006685662 #> X3 -0.2262325 -0.03807142 -0.2115428 -0.01464437 -0.2604663 -0.063567788 #> X4 -0.4336032 -0.19861671 -0.4793055 -0.22524165 -0.3610949 -0.107030999 #> X5 -0.2895056 0.13307318 -0.3083408 0.07915147 -0.1560125 0.231479782 #> X6 0.3197348 0.65767612 0.3256605 0.67125328 0.2415264 0.587119147 #> X7 -0.2387634 -0.03963758 -0.2590735 -0.03271142 -0.2540574 -0.027695351 #> #> X1 -0.2867282 -0.07494113 #> X2 -0.2795110 -0.11744873 #> X3 -0.2795040 -0.07955903 #> X4 -0.4109452 -0.17018880 #> X5 -0.1803183 0.17569760 #> X6 0.3172633 0.64752609 #> X7 -0.2222602 0.03146667 #> attr(,"typeBCa") #> [1] TRUEconfints.bootpls(Cornell.bootYX,2:8,typeBCa=FALSE)#> #> X1 -0.2305299 -0.03654653 -0.2146155 -0.01243502 -0.2657483 -0.063567788 #> X2 -0.3824730 -0.12056633 -0.4240731 -0.16474400 -0.2526435 0.006685662 #> X3 -0.2262325 -0.03807142 -0.2115428 -0.01464437 -0.2604663 -0.063567788 #> X4 -0.4336032 -0.19861671 -0.4793055 -0.22524165 -0.3610949 -0.107030999 #> X5 -0.2895056 0.13307318 -0.3083408 0.07915147 -0.1560125 0.231479782 #> X6 0.3197348 0.65767612 0.3256605 0.67125328 0.2415264 0.587119147 #> X7 -0.2387634 -0.03963758 -0.2590735 -0.03271142 -0.2540574 -0.027695351 #> attr(,"typeBCa") #> [1] FALSE# }