This function provides a summary method for the class "cv.plsRmodel"
Usage
# S3 method for class 'cv.plsRmodel'
summary(object, ...)
References
Nicolas Meyer, Myriam Maumy-Bertrand et Frédéric Bertrand (2010). Comparing the linear and the logistic PLS regression with qualitative predictors: application to allelotyping data. Journal de la Societe Francaise de Statistique, 151(2), pages 1-18. https://www.numdam.org/item/JSFS_2010__151_2_1_0/
Author
Frédéric Bertrand
frederic.bertrand@lecnam.net
https://fbertran.github.io/homepage/
Examples
data(Cornell)
summary(cv.plsR(Y~.,data=Cornell,nt=10,K=6, verbose=FALSE), verbose=FALSE)
#> [[1]]
#> AIC Q2cum_Y LimQ2_Y Q2_Y PRESS_Y RSS_Y R2_Y
#> Nb_Comp_0 82.01205 NA NA NA NA 467.796667 NA
#> Nb_Comp_1 53.15173 0.8496596 0.0975 0.8496596 70.32872 35.742486 0.9235940
#> Nb_Comp_2 41.08283 0.7926079 0.0975 -0.3794841 49.30619 11.066606 0.9763431
#> Nb_Comp_3 32.06411 0.5788646 0.0975 -1.0306237 22.47211 4.418081 0.9905556
#> Nb_Comp_4 33.76477 -1.6107564 0.0975 -5.1993283 27.38914 4.309235 0.9907882
#> Nb_Comp_5 33.34373 -17.5479050 0.0975 -6.1044181 30.61461 3.521924 0.9924713
#> Nb_Comp_6 35.25533 NA 0.0975 NA NA 3.496074 0.9925265
#> AIC.std DoF.dof sigmahat.dof AIC.dof BIC.dof GMDL.dof
#> Nb_Comp_0 37.010388 1.000000 6.5212706 46.0708838 47.7893514 27.59461
#> Nb_Comp_1 8.150064 2.740749 1.8665281 4.5699686 4.9558156 21.34020
#> Nb_Comp_2 -3.918831 5.085967 1.1825195 2.1075461 2.3949331 27.40202
#> Nb_Comp_3 -12.937550 5.121086 0.7488308 0.8467795 0.9628191 24.40842
#> Nb_Comp_4 -11.236891 5.103312 0.7387162 0.8232505 0.9357846 24.23105
#> Nb_Comp_5 -11.657929 6.006316 0.7096382 0.7976101 0.9198348 28.21184
#> Nb_Comp_6 -9.746328 7.000002 0.7633343 0.9711322 1.1359502 33.18348
#> DoF.naive sigmahat.naive AIC.naive BIC.naive GMDL.naive
#> Nb_Comp_0 1 6.5212706 46.0708838 47.7893514 27.59461
#> Nb_Comp_1 2 1.8905683 4.1699567 4.4588195 18.37545
#> Nb_Comp_2 3 1.1088836 1.5370286 1.6860917 17.71117
#> Nb_Comp_3 4 0.7431421 0.7363469 0.8256118 19.01033
#> Nb_Comp_4 5 0.7846050 0.8721072 0.9964867 24.16510
#> Nb_Comp_5 6 0.7661509 0.8804809 1.0227979 28.64206
#> Nb_Comp_6 7 0.8361907 1.1070902 1.3048716 33.63927
#> attr(,"computed_nt")
#> [1] 6
#>
#> attr(,"class")
#> [1] "summary.cv.plsRmodel"