This function provides a predict method for the class "plsRmodel"
An object of the class "plsRmodel"
.
An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used.
A value with a single value of component to use for prediction.
Type of predicted value. Available choices are the response
values ("response
") or the scores ("scores
").
Vector of case weights. If weights
is a vector of
integers, then the estimated coefficients are equivalent to estimating the
model from data with the individual cases
replicated as many times as
indicated by weights
.
Selects the way of predicting the response or the scores of
the new data. For complete rows, without any missing value, there are two
different ways of computing the prediction. As a consequence, for mixed
datasets, with complete and incomplete rows, there are two ways of computing
prediction : either predicts any row as if there were missing values in it
(missingdata
) or selects the prediction method accordingly to the
completeness of the row (adaptative
).
should info messages be displayed ?
Arguments to be passed on to plsRglm::plsR
.
When type is "response
", a matrix of predicted response
values is returned.
When type is "scores
", a score matrix is
returned.
Nicolas Meyer, Myriam Maumy-Bertrand et Frédéric Bertrand (2010). Comparing the linear and the logistic PLS regression with qualitative predictors: application to allelotyping data. Journal de la Societe Francaise de Statistique, 151(2), pages 1-18. http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/47
data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
data(pine_sup)
Xpine_sup<-pine_sup[,1:10]
Xpine_supNA<-Xpine_sup
Xpine_supNA[1,1]<-NA
modpls=plsR(object=ypine,dataX=Xpine,nt=6,modele="pls", verbose=FALSE)
modplsform=plsR(x11~.,data=pine,nt=6,modele="pls", verbose=FALSE)
modpls2=plsR(object=ypine,dataX=Xpine,nt=6,modele="pls",dataPredictY=Xpine_sup, verbose=FALSE)
modpls2NA=plsR(object=ypine,dataX=Xpine,nt=6,modele="pls",dataPredictY=Xpine_supNA, verbose=FALSE)
#Identical to predict(modpls,type="response") or modpls$ValsPredictY
cbind(predict(modpls),predict(modplsform))
#> [,1] [,2]
#> 1 1.88550891 1.88550891
#> 2 1.20179188 1.20179188
#> 3 1.51671911 1.51671911
#> 4 1.04125064 1.04125064
#> 5 0.57134580 0.57134580
#> 6 1.39997555 1.39997555
#> 7 -0.11535438 -0.11535438
#> 8 0.32418945 0.32418945
#> 9 1.65007715 1.65007715
#> 10 0.94847153 0.94847153
#> 11 0.63882421 0.63882421
#> 12 0.98380367 0.98380367
#> 13 2.19486369 2.19486369
#> 14 1.90455582 1.90455582
#> 15 1.51027552 1.51027552
#> 16 -0.51351160 -0.51351160
#> 17 0.10574381 0.10574381
#> 18 0.78377367 0.78377367
#> 19 0.88040097 0.88040097
#> 20 -0.07763891 -0.07763891
#> 21 0.61594736 0.61594736
#> 22 0.71165796 0.71165796
#> 23 0.71111241 0.71111241
#> 24 0.27266379 0.27266379
#> 25 -0.04249364 -0.04249364
#> 26 0.67364464 0.67364464
#> 27 0.15754257 0.15754257
#> 28 0.90956750 0.90956750
#> 29 1.51049933 1.51049933
#> 30 0.42326984 0.42326984
#> 31 1.39942166 1.39942166
#> 32 0.55048739 0.55048739
#> 33 0.04161271 0.04161271
#Identical to modpls$ttPredictY
predict(modpls,type="scores")
#> Comp_1 Comp_2 Comp_3 Comp_4 Comp_5 Comp_6
#> 1 2.9096976 1.64928263 -0.009483345 0.057956125 -1.46934378 -0.489598560
#> 2 0.7632932 0.53986261 -0.159129490 0.437277302 -0.17706329 -0.321853358
#> 3 2.5797729 -0.95827084 0.555733674 0.564062003 -0.87910500 0.284035643
#> 4 0.0443116 -0.73426297 1.346922821 0.343331779 -0.61503115 0.321925722
#> 5 0.8636609 -1.16804390 -0.764622885 0.093269712 -1.08357804 0.406014752
#> 6 2.0735510 0.19497416 -0.670208952 0.413100157 -0.18688067 0.313358700
#> 7 -1.8665241 -2.48962433 0.797691352 -0.120816072 0.24965976 0.473848359
#> 8 -0.3528084 0.04861907 -1.852562297 0.290984465 0.31452397 -0.838090240
#> 9 2.5760644 0.15055738 0.648675543 -0.250529134 0.91785586 -0.024983347
#> 10 0.7101307 -0.41831551 0.377690029 -0.377341589 1.50934893 0.005287361
#> 11 -1.4335481 1.66638440 0.456378669 -1.104406098 -0.44664111 0.207883485
#> 12 -3.3502270 1.31224504 1.417402888 1.104955312 1.55029102 -0.231379510
#> 13 3.6223851 0.52711545 0.931982918 0.263506207 -0.45209584 0.269206095
#> 14 2.1481736 1.27179987 -0.531059123 0.880856701 0.19746452 0.441259500
#> 15 1.8241923 0.37179819 -0.148615856 0.272375958 0.74396025 0.322278940
#> 16 -4.2769308 -0.60364703 -0.145483587 0.061124443 -0.07065661 -0.227489941
#> 17 -2.7842661 0.07795936 -0.502459829 0.582930183 -1.32991074 0.212595330
#> 18 0.8485036 0.40742891 -0.193547055 -0.711084310 -0.56678414 -0.654095817
#> 19 1.0268524 -1.55540630 0.267743180 0.304546989 0.88466538 0.011898270
#> 20 -2.0252326 -0.95493184 -0.296655275 -0.083369174 0.12999791 -0.220552715
#> 21 -2.9034527 0.76785147 1.198603055 0.659329630 -1.11470720 -0.353608888
#> 22 -0.6130182 0.01002519 0.509344060 -0.005358532 -0.61128002 -0.200778587
#> 23 0.3973956 0.13794708 -1.064862116 -0.089851072 0.79543645 -0.145976068
#> 24 -1.9919455 -0.11442060 0.306396644 0.130362294 -0.45181618 -0.644950290
#> 25 -0.9692387 -1.33933413 -1.514216201 0.419166401 -0.31389894 -0.126098495
#> 26 0.4320999 0.08330600 -0.734286784 -0.465917039 0.54059199 0.026669076
#> 27 -3.0186366 1.40703110 -0.783174430 -0.415481000 -1.00237524 1.266343581
#> 28 2.7834585 -1.59488217 0.077656351 -0.549262658 -0.86934018 -0.248831094
#> 29 2.4348733 -0.09247079 0.513378875 -0.284383041 0.63256561 0.139995140
#> 30 -0.3039968 -0.25883732 0.796456033 -1.182848400 -0.21148979 -0.558234302
#> 31 0.6490525 1.01235432 -0.442700445 0.584228984 1.60266786 -0.069695249
#> 32 -0.5424034 1.07847208 -0.113667400 -1.404961066 0.47606589 0.182674243
#> 33 -2.2552401 -0.43256657 -0.275321019 -0.417755460 1.30690250 0.470942265
predict(modplsform,type="scores")
#> Comp_1 Comp_2 Comp_3 Comp_4 Comp_5 Comp_6
#> 1 2.9096976 1.64928263 -0.009483345 0.057956125 -1.46934378 -0.489598560
#> 2 0.7632932 0.53986261 -0.159129490 0.437277302 -0.17706329 -0.321853358
#> 3 2.5797729 -0.95827084 0.555733674 0.564062003 -0.87910500 0.284035643
#> 4 0.0443116 -0.73426297 1.346922821 0.343331779 -0.61503115 0.321925722
#> 5 0.8636609 -1.16804390 -0.764622885 0.093269712 -1.08357804 0.406014752
#> 6 2.0735510 0.19497416 -0.670208952 0.413100157 -0.18688067 0.313358700
#> 7 -1.8665241 -2.48962433 0.797691352 -0.120816072 0.24965976 0.473848359
#> 8 -0.3528084 0.04861907 -1.852562297 0.290984465 0.31452397 -0.838090240
#> 9 2.5760644 0.15055738 0.648675543 -0.250529134 0.91785586 -0.024983347
#> 10 0.7101307 -0.41831551 0.377690029 -0.377341589 1.50934893 0.005287361
#> 11 -1.4335481 1.66638440 0.456378669 -1.104406098 -0.44664111 0.207883485
#> 12 -3.3502270 1.31224504 1.417402888 1.104955312 1.55029102 -0.231379510
#> 13 3.6223851 0.52711545 0.931982918 0.263506207 -0.45209584 0.269206095
#> 14 2.1481736 1.27179987 -0.531059123 0.880856701 0.19746452 0.441259500
#> 15 1.8241923 0.37179819 -0.148615856 0.272375958 0.74396025 0.322278940
#> 16 -4.2769308 -0.60364703 -0.145483587 0.061124443 -0.07065661 -0.227489941
#> 17 -2.7842661 0.07795936 -0.502459829 0.582930183 -1.32991074 0.212595330
#> 18 0.8485036 0.40742891 -0.193547055 -0.711084310 -0.56678414 -0.654095817
#> 19 1.0268524 -1.55540630 0.267743180 0.304546989 0.88466538 0.011898270
#> 20 -2.0252326 -0.95493184 -0.296655275 -0.083369174 0.12999791 -0.220552715
#> 21 -2.9034527 0.76785147 1.198603055 0.659329630 -1.11470720 -0.353608888
#> 22 -0.6130182 0.01002519 0.509344060 -0.005358532 -0.61128002 -0.200778587
#> 23 0.3973956 0.13794708 -1.064862116 -0.089851072 0.79543645 -0.145976068
#> 24 -1.9919455 -0.11442060 0.306396644 0.130362294 -0.45181618 -0.644950290
#> 25 -0.9692387 -1.33933413 -1.514216201 0.419166401 -0.31389894 -0.126098495
#> 26 0.4320999 0.08330600 -0.734286784 -0.465917039 0.54059199 0.026669076
#> 27 -3.0186366 1.40703110 -0.783174430 -0.415481000 -1.00237524 1.266343581
#> 28 2.7834585 -1.59488217 0.077656351 -0.549262658 -0.86934018 -0.248831094
#> 29 2.4348733 -0.09247079 0.513378875 -0.284383041 0.63256561 0.139995140
#> 30 -0.3039968 -0.25883732 0.796456033 -1.182848400 -0.21148979 -0.558234302
#> 31 0.6490525 1.01235432 -0.442700445 0.584228984 1.60266786 -0.069695249
#> 32 -0.5424034 1.07847208 -0.113667400 -1.404961066 0.47606589 0.182674243
#> 33 -2.2552401 -0.43256657 -0.275321019 -0.417755460 1.30690250 0.470942265
# \donttest{
#Identical to modpls2$ValsPredictY
cbind(predict(modpls,newdata=Xpine_sup,type="response"),
predict(modplsform,newdata=Xpine_sup,type="response"))
#> [,1] [,2]
#> [1,] 1.3129638 1.3129638
#> [2,] 1.7388475 1.7388475
#> [3,] 1.6763518 1.6763518
#> [4,] 1.8099257 1.8099257
#> [5,] 1.6200619 1.6200619
#> [6,] 3.0575985 3.0575985
#> [7,] 1.9649911 1.9649911
#> [8,] 1.9619642 1.9619642
#> [9,] 1.4752241 1.4752241
#> [10,] 2.0924149 2.0924149
#> [11,] 2.0100323 2.0100323
#> [12,] 2.3735435 2.3735435
#> [13,] 1.1905470 1.1905470
#> [14,] 0.9390483 0.9390483
#> [15,] 0.3599746 0.3599746
#> [16,] 0.5024583 0.5024583
#> [17,] 1.2330826 1.2330826
#> [18,] 1.2011370 1.2011370
#> [19,] 0.2350173 0.2350173
#> [20,] 0.8460029 0.8460029
#> [21,] 1.2946902 1.2946902
#> [22,] 0.3957882 0.3957882
#> [23,] 1.2468234 1.2468234
#> [24,] 0.4951827 0.4951827
#> [25,] 0.5538154 0.5538154
#Select the number of components to use to derive the prediction
predict(modpls,newdata=Xpine_sup,type="response",comps=1)
#> [,1]
#> [1,] 0.4529386
#> [2,] 1.5275250
#> [3,] 0.8653393
#> [4,] 1.2623019
#> [5,] 1.2181767
#> [6,] 0.5365724
#> [7,] 1.8005533
#> [8,] 1.4130804
#> [9,] 1.3482246
#> [10,] 0.8525246
#> [11,] 1.4451515
#> [12,] 1.0083162
#> [13,] 0.1933256
#> [14,] 0.4868117
#> [15,] 0.2004471
#> [16,] 0.1145533
#> [17,] 0.6559225
#> [18,] 1.0049792
#> [19,] 0.4994408
#> [20,] 0.4326020
#> [21,] 0.8987432
#> [22,] 0.4734407
#> [23,] 1.0680659
#> [24,] 0.1914079
#> [25,] 0.6558292
predict(modpls,newdata=Xpine_sup,type="response",comps=3)
#> [,1]
#> [1,] 1.3964152
#> [2,] 1.3235411
#> [3,] 1.1864009
#> [4,] 1.5145135
#> [5,] 1.1423259
#> [6,] 2.1104660
#> [7,] 2.1399449
#> [8,] 1.6900978
#> [9,] 1.3301024
#> [10,] 1.5686734
#> [11,] 2.0696493
#> [12,] 1.4845725
#> [13,] 0.9158598
#> [14,] 0.6998484
#> [15,] 0.4447477
#> [16,] 0.3612035
#> [17,] 1.2314589
#> [18,] 1.3030724
#> [19,] 0.6100443
#> [20,] 0.6747087
#> [21,] 1.5231209
#> [22,] 0.3475253
#> [23,] 1.4135977
#> [24,] 0.1426153
#> [25,] 0.3905439
predict(modpls,newdata=Xpine_sup,type="response",comps=6)
#> [,1]
#> [1,] 1.3129638
#> [2,] 1.7388475
#> [3,] 1.6763518
#> [4,] 1.8099257
#> [5,] 1.6200619
#> [6,] 3.0575985
#> [7,] 1.9649911
#> [8,] 1.9619642
#> [9,] 1.4752241
#> [10,] 2.0924149
#> [11,] 2.0100323
#> [12,] 2.3735435
#> [13,] 1.1905470
#> [14,] 0.9390483
#> [15,] 0.3599746
#> [16,] 0.5024583
#> [17,] 1.2330826
#> [18,] 1.2011370
#> [19,] 0.2350173
#> [20,] 0.8460029
#> [21,] 1.2946902
#> [22,] 0.3957882
#> [23,] 1.2468234
#> [24,] 0.4951827
#> [25,] 0.5538154
try(predict(modpls,newdata=Xpine_sup,type="response",comps=8))
#> Error in predict.plsRmodel(modpls, newdata = Xpine_sup, type = "response", :
#> Cannot predict using more components than extracted.
#Identical to modpls2$ttValsPredictY
predict(modpls,newdata=Xpine_sup,type="scores")
#> Comp_1 Comp_2 Comp_3 Comp_4 Comp_5 Comp_6
#> [1,] -1.3617679 2.993459769 0.73427739 0.452953573 -1.11579015 -1.473542293
#> [2,] 2.7226457 -1.448207417 0.75220272 1.097297569 0.53631331 0.559682133
#> [3,] 0.2057330 -0.065699548 1.48307730 1.608813107 0.19908226 0.005584384
#> [4,] 1.7145547 0.999997451 -0.03091563 0.968262496 -0.09309405 0.121080636
#> [5,] 1.5468388 -0.962223763 0.76157621 1.426096569 0.06539057 0.474713635
#> [6,] -1.0438828 5.067110560 1.14136095 2.864592446 1.68207458 0.014847912
#> [7,] 3.7604036 1.284021688 0.02849577 0.004909657 -3.03776558 -0.062192479
#> [8,] 2.2876515 0.199824399 0.98790364 0.944924320 -0.59601659 0.230003786
#> [9,] 2.0411399 0.238406080 -0.35062475 0.558516943 0.19675157 -0.301893947
#> [10,] 0.1570251 1.504717841 1.43017861 1.564536266 0.14708601 0.477418245
#> [11,] 2.4095509 1.155533043 1.42525994 0.452142174 -2.83846498 -0.334252057
#> [12,] 0.7491762 3.052072375 -1.38187603 2.282056699 2.18543478 0.836814768
#> [13,] -2.3485356 0.216703031 2.92300006 0.685183103 0.15356406 0.590760027
#> [14,] -1.2330191 0.008574545 0.92474943 0.312313976 1.39640033 0.646248390
#> [15,] -2.3214673 0.108405764 0.94835654 0.484159548 0.27324060 -2.308760250
#> [16,] -2.6479422 0.291815002 0.75007834 0.717778190 0.67224455 -1.038074446
#> [17,] -0.5902429 1.554635840 0.75660189 0.131428359 -0.44100984 -0.121010721
#> [18,] 0.7364927 0.699547511 0.51203773 -0.265761130 -0.22924277 -0.095761547
#> [19,] -1.1850170 0.300466200 0.14346126 -1.526977483 0.06869875 0.710089752
#> [20,] -1.4390656 -0.147557539 1.22983008 0.341807486 0.21492515 0.545779712
#> [21,] 0.3326983 1.459383292 1.07917521 -0.766536942 -0.26974278 0.137300450
#> [22,] -1.2838413 0.228232572 -0.81189728 0.112113284 1.24971859 -0.519868578
#> [23,] 0.9762797 0.792728055 0.61416007 -0.026280577 -1.58598821 -0.665173114
#> [24,] -2.3558246 -1.146802277 1.09018353 0.784478257 1.20560305 0.491817441
#> [25,] -0.5905978 -0.284407470 -0.84024689 0.182976076 1.35912630 0.311267458
#Select the number of components in the scores matrix
predict(modpls,newdata=Xpine_sup,type="scores",comps=1)
#> Comp_1
#> [1,] -1.3617679
#> [2,] 2.7226457
#> [3,] 0.2057330
#> [4,] 1.7145547
#> [5,] 1.5468388
#> [6,] -1.0438828
#> [7,] 3.7604036
#> [8,] 2.2876515
#> [9,] 2.0411399
#> [10,] 0.1570251
#> [11,] 2.4095509
#> [12,] 0.7491762
#> [13,] -2.3485356
#> [14,] -1.2330191
#> [15,] -2.3214673
#> [16,] -2.6479422
#> [17,] -0.5902429
#> [18,] 0.7364927
#> [19,] -1.1850170
#> [20,] -1.4390656
#> [21,] 0.3326983
#> [22,] -1.2838413
#> [23,] 0.9762797
#> [24,] -2.3558246
#> [25,] -0.5905978
predict(modpls,newdata=Xpine_sup,type="scores",comps=3)
#> Comp_1 Comp_2 Comp_3
#> [1,] -1.3617679 2.993459769 0.73427739
#> [2,] 2.7226457 -1.448207417 0.75220272
#> [3,] 0.2057330 -0.065699548 1.48307730
#> [4,] 1.7145547 0.999997451 -0.03091563
#> [5,] 1.5468388 -0.962223763 0.76157621
#> [6,] -1.0438828 5.067110560 1.14136095
#> [7,] 3.7604036 1.284021688 0.02849577
#> [8,] 2.2876515 0.199824399 0.98790364
#> [9,] 2.0411399 0.238406080 -0.35062475
#> [10,] 0.1570251 1.504717841 1.43017861
#> [11,] 2.4095509 1.155533043 1.42525994
#> [12,] 0.7491762 3.052072375 -1.38187603
#> [13,] -2.3485356 0.216703031 2.92300006
#> [14,] -1.2330191 0.008574545 0.92474943
#> [15,] -2.3214673 0.108405764 0.94835654
#> [16,] -2.6479422 0.291815002 0.75007834
#> [17,] -0.5902429 1.554635840 0.75660189
#> [18,] 0.7364927 0.699547511 0.51203773
#> [19,] -1.1850170 0.300466200 0.14346126
#> [20,] -1.4390656 -0.147557539 1.22983008
#> [21,] 0.3326983 1.459383292 1.07917521
#> [22,] -1.2838413 0.228232572 -0.81189728
#> [23,] 0.9762797 0.792728055 0.61416007
#> [24,] -2.3558246 -1.146802277 1.09018353
#> [25,] -0.5905978 -0.284407470 -0.84024689
predict(modpls,newdata=Xpine_sup,type="scores",comps=6)
#> Comp_1 Comp_2 Comp_3 Comp_4 Comp_5 Comp_6
#> [1,] -1.3617679 2.993459769 0.73427739 0.452953573 -1.11579015 -1.473542293
#> [2,] 2.7226457 -1.448207417 0.75220272 1.097297569 0.53631331 0.559682133
#> [3,] 0.2057330 -0.065699548 1.48307730 1.608813107 0.19908226 0.005584384
#> [4,] 1.7145547 0.999997451 -0.03091563 0.968262496 -0.09309405 0.121080636
#> [5,] 1.5468388 -0.962223763 0.76157621 1.426096569 0.06539057 0.474713635
#> [6,] -1.0438828 5.067110560 1.14136095 2.864592446 1.68207458 0.014847912
#> [7,] 3.7604036 1.284021688 0.02849577 0.004909657 -3.03776558 -0.062192479
#> [8,] 2.2876515 0.199824399 0.98790364 0.944924320 -0.59601659 0.230003786
#> [9,] 2.0411399 0.238406080 -0.35062475 0.558516943 0.19675157 -0.301893947
#> [10,] 0.1570251 1.504717841 1.43017861 1.564536266 0.14708601 0.477418245
#> [11,] 2.4095509 1.155533043 1.42525994 0.452142174 -2.83846498 -0.334252057
#> [12,] 0.7491762 3.052072375 -1.38187603 2.282056699 2.18543478 0.836814768
#> [13,] -2.3485356 0.216703031 2.92300006 0.685183103 0.15356406 0.590760027
#> [14,] -1.2330191 0.008574545 0.92474943 0.312313976 1.39640033 0.646248390
#> [15,] -2.3214673 0.108405764 0.94835654 0.484159548 0.27324060 -2.308760250
#> [16,] -2.6479422 0.291815002 0.75007834 0.717778190 0.67224455 -1.038074446
#> [17,] -0.5902429 1.554635840 0.75660189 0.131428359 -0.44100984 -0.121010721
#> [18,] 0.7364927 0.699547511 0.51203773 -0.265761130 -0.22924277 -0.095761547
#> [19,] -1.1850170 0.300466200 0.14346126 -1.526977483 0.06869875 0.710089752
#> [20,] -1.4390656 -0.147557539 1.22983008 0.341807486 0.21492515 0.545779712
#> [21,] 0.3326983 1.459383292 1.07917521 -0.766536942 -0.26974278 0.137300450
#> [22,] -1.2838413 0.228232572 -0.81189728 0.112113284 1.24971859 -0.519868578
#> [23,] 0.9762797 0.792728055 0.61416007 -0.026280577 -1.58598821 -0.665173114
#> [24,] -2.3558246 -1.146802277 1.09018353 0.784478257 1.20560305 0.491817441
#> [25,] -0.5905978 -0.284407470 -0.84024689 0.182976076 1.35912630 0.311267458
try(predict(modpls,newdata=Xpine_sup,type="scores",comps=8))
#> Error in predict.plsRmodel(modpls, newdata = Xpine_sup, type = "scores", :
#> Cannot predict using more components than extracted.
#Identical to modpls2NA$ValsPredictY
predict(modpls,newdata=Xpine_supNA,type="response",methodNA="missingdata")
#> Prediction as if missing values in every row.
#> [,1]
#> [1,] -0.4380246
#> [2,] 1.7274179
#> [3,] 1.7531622
#> [4,] 1.8064674
#> [5,] 1.6641257
#> [6,] 3.1037177
#> [7,] 1.8996680
#> [8,] 1.9915726
#> [9,] 1.3431573
#> [10,] 2.0567726
#> [11,] 1.9113526
#> [12,] 2.5555213
#> [13,] 1.1747931
#> [14,] 0.9143911
#> [15,] 0.6401136
#> [16,] 0.5709883
#> [17,] 1.4171363
#> [18,] 1.3099823
#> [19,] 0.1209765
#> [20,] 0.8630320
#> [21,] 1.3182253
#> [22,] 0.3658273
#> [23,] 1.2252369
#> [24,] 0.5737034
#> [25,] 0.6736099
cbind(predict(modpls,newdata=Xpine_supNA,type="response"),
predict(modplsform,newdata=Xpine_supNA,type="response"))
#> Missing value in row 1 .
#> Missing value in row 1 .
#> [,1] [,2]
#> [1,] -0.4380246 -0.4380246
#> [2,] 1.7388475 1.7388475
#> [3,] 1.6763518 1.6763518
#> [4,] 1.8099257 1.8099257
#> [5,] 1.6200619 1.6200619
#> [6,] 3.0575985 3.0575985
#> [7,] 1.9649911 1.9649911
#> [8,] 1.9619642 1.9619642
#> [9,] 1.4752241 1.4752241
#> [10,] 2.0924149 2.0924149
#> [11,] 2.0100323 2.0100323
#> [12,] 2.3735435 2.3735435
#> [13,] 1.1905470 1.1905470
#> [14,] 0.9390483 0.9390483
#> [15,] 0.3599746 0.3599746
#> [16,] 0.5024583 0.5024583
#> [17,] 1.2330826 1.2330826
#> [18,] 1.2011370 1.2011370
#> [19,] 0.2350173 0.2350173
#> [20,] 0.8460029 0.8460029
#> [21,] 1.2946902 1.2946902
#> [22,] 0.3957882 0.3957882
#> [23,] 1.2468234 1.2468234
#> [24,] 0.4951827 0.4951827
#> [25,] 0.5538154 0.5538154
predict(modpls,newdata=Xpine_supNA,type="response",comps=1)
#> Missing value in row 1 .
#> [,1]
#> [1,] 0.01262359
#> [2,] 1.52752498
#> [3,] 0.86533931
#> [4,] 1.26230188
#> [5,] 1.21817675
#> [6,] 0.53657240
#> [7,] 1.80055327
#> [8,] 1.41308042
#> [9,] 1.34822461
#> [10,] 0.85252455
#> [11,] 1.44515149
#> [12,] 1.00831620
#> [13,] 0.19332555
#> [14,] 0.48681169
#> [15,] 0.20044706
#> [16,] 0.11455334
#> [17,] 0.65592253
#> [18,] 1.00497922
#> [19,] 0.49944077
#> [20,] 0.43260202
#> [21,] 0.89874319
#> [22,] 0.47344065
#> [23,] 1.06806585
#> [24,] 0.19140786
#> [25,] 0.65582915
predict(modpls,newdata=Xpine_supNA,type="response",comps=3)
#> Missing value in row 1 .
#> [,1]
#> [1,] -0.0001503207
#> [2,] 1.3235411249
#> [3,] 1.1864008651
#> [4,] 1.5145134877
#> [5,] 1.1423259016
#> [6,] 2.1104660488
#> [7,] 2.1399449414
#> [8,] 1.6900977631
#> [9,] 1.3301024082
#> [10,] 1.5686733743
#> [11,] 2.0696493364
#> [12,] 1.4845725327
#> [13,] 0.9158597617
#> [14,] 0.6998484111
#> [15,] 0.4447477116
#> [16,] 0.3612034996
#> [17,] 1.2314588588
#> [18,] 1.3030723893
#> [19,] 0.6100442895
#> [20,] 0.6747086944
#> [21,] 1.5231208749
#> [22,] 0.3475252821
#> [23,] 1.4135976883
#> [24,] 0.1426152740
#> [25,] 0.3905438807
predict(modpls,newdata=Xpine_supNA,type="response",comps=6)
#> Missing value in row 1 .
#> [,1]
#> [1,] -0.4380246
#> [2,] 1.7388475
#> [3,] 1.6763518
#> [4,] 1.8099257
#> [5,] 1.6200619
#> [6,] 3.0575985
#> [7,] 1.9649911
#> [8,] 1.9619642
#> [9,] 1.4752241
#> [10,] 2.0924149
#> [11,] 2.0100323
#> [12,] 2.3735435
#> [13,] 1.1905470
#> [14,] 0.9390483
#> [15,] 0.3599746
#> [16,] 0.5024583
#> [17,] 1.2330826
#> [18,] 1.2011370
#> [19,] 0.2350173
#> [20,] 0.8460029
#> [21,] 1.2946902
#> [22,] 0.3957882
#> [23,] 1.2468234
#> [24,] 0.4951827
#> [25,] 0.5538154
try(predict(modpls,newdata=Xpine_supNA,type="response",comps=8))
#> Error in predict.plsRmodel(modpls, newdata = Xpine_supNA, type = "response", :
#> Cannot predict using more components than extracted.
#Identical to modpls2NA$ttPredictY
predict(modpls,newdata=Xpine_supNA,type="scores",methodNA="missingdata")
#> Prediction as if missing values in every row.
#> Comp_1 Comp_2 Comp_3 Comp_4 Comp_5 Comp_6
#> [1,] -3.0353687 0.987755634 -1.179371542 -0.19743715 -3.30898182 -1.8375844
#> [2,] 2.7220756 -1.450870839 0.745991000 1.08616889 0.51576986 0.5150498
#> [3,] 0.2095646 -0.047800552 1.524821925 1.68360118 0.33714044 0.3055271
#> [4,] 1.7143822 0.999191584 -0.032795102 0.96489531 -0.09930985 0.1075763
#> [5,] 1.5490368 -0.951955668 0.785523797 1.46900015 0.14459023 0.6467814
#> [6,] -1.0415822 5.077857636 1.166425636 2.90949737 1.76496872 0.1949422
#> [7,] 3.7571450 1.268799569 -0.007005749 -0.05869351 -3.15517652 -0.3172774
#> [8,] 2.2891284 0.206724001 1.003995120 0.97375319 -0.54279872 0.3456240
#> [9,] 2.0345518 0.207630787 -0.422399890 0.42992734 -0.04062381 -0.8176114
#> [10,] 0.1552471 1.496412167 1.410807841 1.52983235 0.08302285 0.3382358
#> [11,] 2.4046283 1.132537890 1.371629890 0.35606063 -3.01583074 -0.7195937
#> [12,] 0.7582541 3.094478343 -1.282975446 2.45924320 2.51251965 1.5474334
#> [13,] -2.3493214 0.213031935 2.914438207 0.66984402 0.12524823 0.5292416
#> [14,] -1.2342491 0.002828718 0.911348819 0.28830596 1.35208173 0.5499626
#> [15,] -2.3074928 0.173686077 1.100605419 0.75692282 0.77675941 -1.2148245
#> [16,] -2.6445236 0.307784429 0.787322756 0.78450387 0.79541961 -0.7704665
#> [17,] -0.5810615 1.597525542 0.856630655 0.31063607 -0.11019384 0.5977141
#> [18,] 0.7419223 0.724911543 0.571192552 -0.15978161 -0.03360542 0.3292766
#> [19,] -1.1907059 0.273891474 0.081482816 -1.63801569 -0.13627690 0.2647634
#> [20,] -1.4382161 -0.143589272 1.239085007 0.35838825 0.24553311 0.6122780
#> [21,] 0.3338724 1.464867644 1.091965992 -0.74362146 -0.22744099 0.2292046
#> [22,] -1.2853359 0.221250834 -0.828180315 0.08294122 1.19586719 -0.6368651
#> [23,] 0.9752029 0.787697790 0.602428320 -0.04729873 -1.62478755 -0.7494679
#> [24,] -2.3519076 -1.128504742 1.132857643 0.86093156 1.34673523 0.7984386
#> [25,] -0.5846219 -0.256491971 -0.775141451 0.29961649 1.57444357 0.7790618
predict(modplsform,newdata=Xpine_supNA,type="scores",methodNA="missingdata")
#> Prediction as if missing values in every row.
#> Comp_1 Comp_2 Comp_3 Comp_4 Comp_5 Comp_6
#> [1,] -3.0353687 0.987755634 -1.179371542 -0.19743715 -3.30898182 -1.8375844
#> [2,] 2.7220756 -1.450870839 0.745991000 1.08616889 0.51576986 0.5150498
#> [3,] 0.2095646 -0.047800552 1.524821925 1.68360118 0.33714044 0.3055271
#> [4,] 1.7143822 0.999191584 -0.032795102 0.96489531 -0.09930985 0.1075763
#> [5,] 1.5490368 -0.951955668 0.785523797 1.46900015 0.14459023 0.6467814
#> [6,] -1.0415822 5.077857636 1.166425636 2.90949737 1.76496872 0.1949422
#> [7,] 3.7571450 1.268799569 -0.007005749 -0.05869351 -3.15517652 -0.3172774
#> [8,] 2.2891284 0.206724001 1.003995120 0.97375319 -0.54279872 0.3456240
#> [9,] 2.0345518 0.207630787 -0.422399890 0.42992734 -0.04062381 -0.8176114
#> [10,] 0.1552471 1.496412167 1.410807841 1.52983235 0.08302285 0.3382358
#> [11,] 2.4046283 1.132537890 1.371629890 0.35606063 -3.01583074 -0.7195937
#> [12,] 0.7582541 3.094478343 -1.282975446 2.45924320 2.51251965 1.5474334
#> [13,] -2.3493214 0.213031935 2.914438207 0.66984402 0.12524823 0.5292416
#> [14,] -1.2342491 0.002828718 0.911348819 0.28830596 1.35208173 0.5499626
#> [15,] -2.3074928 0.173686077 1.100605419 0.75692282 0.77675941 -1.2148245
#> [16,] -2.6445236 0.307784429 0.787322756 0.78450387 0.79541961 -0.7704665
#> [17,] -0.5810615 1.597525542 0.856630655 0.31063607 -0.11019384 0.5977141
#> [18,] 0.7419223 0.724911543 0.571192552 -0.15978161 -0.03360542 0.3292766
#> [19,] -1.1907059 0.273891474 0.081482816 -1.63801569 -0.13627690 0.2647634
#> [20,] -1.4382161 -0.143589272 1.239085007 0.35838825 0.24553311 0.6122780
#> [21,] 0.3338724 1.464867644 1.091965992 -0.74362146 -0.22744099 0.2292046
#> [22,] -1.2853359 0.221250834 -0.828180315 0.08294122 1.19586719 -0.6368651
#> [23,] 0.9752029 0.787697790 0.602428320 -0.04729873 -1.62478755 -0.7494679
#> [24,] -2.3519076 -1.128504742 1.132857643 0.86093156 1.34673523 0.7984386
#> [25,] -0.5846219 -0.256491971 -0.775141451 0.29961649 1.57444357 0.7790618
predict(modpls,newdata=Xpine_supNA,type="scores")
#> Missing value in row 1 .
#> Comp_1 Comp_2 Comp_3 Comp_4 Comp_5 Comp_6
#> [1,] -3.0353687 0.987755634 -1.17937154 -0.197437151 -3.30898182 -1.837584434
#> [2,] 2.7226457 -1.448207417 0.75220272 1.097297569 0.53631331 0.559682133
#> [3,] 0.2057330 -0.065699548 1.48307730 1.608813107 0.19908226 0.005584384
#> [4,] 1.7145547 0.999997451 -0.03091563 0.968262496 -0.09309405 0.121080636
#> [5,] 1.5468388 -0.962223763 0.76157621 1.426096569 0.06539057 0.474713635
#> [6,] -1.0438828 5.067110560 1.14136095 2.864592446 1.68207458 0.014847912
#> [7,] 3.7604036 1.284021688 0.02849577 0.004909657 -3.03776558 -0.062192479
#> [8,] 2.2876515 0.199824399 0.98790364 0.944924320 -0.59601659 0.230003786
#> [9,] 2.0411399 0.238406080 -0.35062475 0.558516943 0.19675157 -0.301893947
#> [10,] 0.1570251 1.504717841 1.43017861 1.564536266 0.14708601 0.477418245
#> [11,] 2.4095509 1.155533043 1.42525994 0.452142174 -2.83846498 -0.334252057
#> [12,] 0.7491762 3.052072375 -1.38187603 2.282056699 2.18543478 0.836814768
#> [13,] -2.3485356 0.216703031 2.92300006 0.685183103 0.15356406 0.590760027
#> [14,] -1.2330191 0.008574545 0.92474943 0.312313976 1.39640033 0.646248390
#> [15,] -2.3214673 0.108405764 0.94835654 0.484159548 0.27324060 -2.308760250
#> [16,] -2.6479422 0.291815002 0.75007834 0.717778190 0.67224455 -1.038074446
#> [17,] -0.5902429 1.554635840 0.75660189 0.131428359 -0.44100984 -0.121010721
#> [18,] 0.7364927 0.699547511 0.51203773 -0.265761130 -0.22924277 -0.095761547
#> [19,] -1.1850170 0.300466200 0.14346126 -1.526977483 0.06869875 0.710089752
#> [20,] -1.4390656 -0.147557539 1.22983008 0.341807486 0.21492515 0.545779712
#> [21,] 0.3326983 1.459383292 1.07917521 -0.766536942 -0.26974278 0.137300450
#> [22,] -1.2838413 0.228232572 -0.81189728 0.112113284 1.24971859 -0.519868578
#> [23,] 0.9762797 0.792728055 0.61416007 -0.026280577 -1.58598821 -0.665173114
#> [24,] -2.3558246 -1.146802277 1.09018353 0.784478257 1.20560305 0.491817441
#> [25,] -0.5905978 -0.284407470 -0.84024689 0.182976076 1.35912630 0.311267458
predict(modplsform,newdata=Xpine_supNA,type="scores")
#> Missing value in row 1 .
#> Comp_1 Comp_2 Comp_3 Comp_4 Comp_5 Comp_6
#> [1,] -3.0353687 0.987755634 -1.17937154 -0.197437151 -3.30898182 -1.837584434
#> [2,] 2.7226457 -1.448207417 0.75220272 1.097297569 0.53631331 0.559682133
#> [3,] 0.2057330 -0.065699548 1.48307730 1.608813107 0.19908226 0.005584384
#> [4,] 1.7145547 0.999997451 -0.03091563 0.968262496 -0.09309405 0.121080636
#> [5,] 1.5468388 -0.962223763 0.76157621 1.426096569 0.06539057 0.474713635
#> [6,] -1.0438828 5.067110560 1.14136095 2.864592446 1.68207458 0.014847912
#> [7,] 3.7604036 1.284021688 0.02849577 0.004909657 -3.03776558 -0.062192479
#> [8,] 2.2876515 0.199824399 0.98790364 0.944924320 -0.59601659 0.230003786
#> [9,] 2.0411399 0.238406080 -0.35062475 0.558516943 0.19675157 -0.301893947
#> [10,] 0.1570251 1.504717841 1.43017861 1.564536266 0.14708601 0.477418245
#> [11,] 2.4095509 1.155533043 1.42525994 0.452142174 -2.83846498 -0.334252057
#> [12,] 0.7491762 3.052072375 -1.38187603 2.282056699 2.18543478 0.836814768
#> [13,] -2.3485356 0.216703031 2.92300006 0.685183103 0.15356406 0.590760027
#> [14,] -1.2330191 0.008574545 0.92474943 0.312313976 1.39640033 0.646248390
#> [15,] -2.3214673 0.108405764 0.94835654 0.484159548 0.27324060 -2.308760250
#> [16,] -2.6479422 0.291815002 0.75007834 0.717778190 0.67224455 -1.038074446
#> [17,] -0.5902429 1.554635840 0.75660189 0.131428359 -0.44100984 -0.121010721
#> [18,] 0.7364927 0.699547511 0.51203773 -0.265761130 -0.22924277 -0.095761547
#> [19,] -1.1850170 0.300466200 0.14346126 -1.526977483 0.06869875 0.710089752
#> [20,] -1.4390656 -0.147557539 1.22983008 0.341807486 0.21492515 0.545779712
#> [21,] 0.3326983 1.459383292 1.07917521 -0.766536942 -0.26974278 0.137300450
#> [22,] -1.2838413 0.228232572 -0.81189728 0.112113284 1.24971859 -0.519868578
#> [23,] 0.9762797 0.792728055 0.61416007 -0.026280577 -1.58598821 -0.665173114
#> [24,] -2.3558246 -1.146802277 1.09018353 0.784478257 1.20560305 0.491817441
#> [25,] -0.5905978 -0.284407470 -0.84024689 0.182976076 1.35912630 0.311267458
predict(modpls,newdata=Xpine_supNA,type="scores",comps=1)
#> Missing value in row 1 .
#> Comp_1
#> [1,] -3.0353687
#> [2,] 2.7226457
#> [3,] 0.2057330
#> [4,] 1.7145547
#> [5,] 1.5468388
#> [6,] -1.0438828
#> [7,] 3.7604036
#> [8,] 2.2876515
#> [9,] 2.0411399
#> [10,] 0.1570251
#> [11,] 2.4095509
#> [12,] 0.7491762
#> [13,] -2.3485356
#> [14,] -1.2330191
#> [15,] -2.3214673
#> [16,] -2.6479422
#> [17,] -0.5902429
#> [18,] 0.7364927
#> [19,] -1.1850170
#> [20,] -1.4390656
#> [21,] 0.3326983
#> [22,] -1.2838413
#> [23,] 0.9762797
#> [24,] -2.3558246
#> [25,] -0.5905978
predict(modpls,newdata=Xpine_supNA,type="scores",comps=3)
#> Missing value in row 1 .
#> Comp_1 Comp_2 Comp_3
#> [1,] -3.0353687 0.987755634 -1.17937154
#> [2,] 2.7226457 -1.448207417 0.75220272
#> [3,] 0.2057330 -0.065699548 1.48307730
#> [4,] 1.7145547 0.999997451 -0.03091563
#> [5,] 1.5468388 -0.962223763 0.76157621
#> [6,] -1.0438828 5.067110560 1.14136095
#> [7,] 3.7604036 1.284021688 0.02849577
#> [8,] 2.2876515 0.199824399 0.98790364
#> [9,] 2.0411399 0.238406080 -0.35062475
#> [10,] 0.1570251 1.504717841 1.43017861
#> [11,] 2.4095509 1.155533043 1.42525994
#> [12,] 0.7491762 3.052072375 -1.38187603
#> [13,] -2.3485356 0.216703031 2.92300006
#> [14,] -1.2330191 0.008574545 0.92474943
#> [15,] -2.3214673 0.108405764 0.94835654
#> [16,] -2.6479422 0.291815002 0.75007834
#> [17,] -0.5902429 1.554635840 0.75660189
#> [18,] 0.7364927 0.699547511 0.51203773
#> [19,] -1.1850170 0.300466200 0.14346126
#> [20,] -1.4390656 -0.147557539 1.22983008
#> [21,] 0.3326983 1.459383292 1.07917521
#> [22,] -1.2838413 0.228232572 -0.81189728
#> [23,] 0.9762797 0.792728055 0.61416007
#> [24,] -2.3558246 -1.146802277 1.09018353
#> [25,] -0.5905978 -0.284407470 -0.84024689
predict(modpls,newdata=Xpine_supNA,type="scores",comps=6)
#> Missing value in row 1 .
#> Comp_1 Comp_2 Comp_3 Comp_4 Comp_5 Comp_6
#> [1,] -3.0353687 0.987755634 -1.17937154 -0.197437151 -3.30898182 -1.837584434
#> [2,] 2.7226457 -1.448207417 0.75220272 1.097297569 0.53631331 0.559682133
#> [3,] 0.2057330 -0.065699548 1.48307730 1.608813107 0.19908226 0.005584384
#> [4,] 1.7145547 0.999997451 -0.03091563 0.968262496 -0.09309405 0.121080636
#> [5,] 1.5468388 -0.962223763 0.76157621 1.426096569 0.06539057 0.474713635
#> [6,] -1.0438828 5.067110560 1.14136095 2.864592446 1.68207458 0.014847912
#> [7,] 3.7604036 1.284021688 0.02849577 0.004909657 -3.03776558 -0.062192479
#> [8,] 2.2876515 0.199824399 0.98790364 0.944924320 -0.59601659 0.230003786
#> [9,] 2.0411399 0.238406080 -0.35062475 0.558516943 0.19675157 -0.301893947
#> [10,] 0.1570251 1.504717841 1.43017861 1.564536266 0.14708601 0.477418245
#> [11,] 2.4095509 1.155533043 1.42525994 0.452142174 -2.83846498 -0.334252057
#> [12,] 0.7491762 3.052072375 -1.38187603 2.282056699 2.18543478 0.836814768
#> [13,] -2.3485356 0.216703031 2.92300006 0.685183103 0.15356406 0.590760027
#> [14,] -1.2330191 0.008574545 0.92474943 0.312313976 1.39640033 0.646248390
#> [15,] -2.3214673 0.108405764 0.94835654 0.484159548 0.27324060 -2.308760250
#> [16,] -2.6479422 0.291815002 0.75007834 0.717778190 0.67224455 -1.038074446
#> [17,] -0.5902429 1.554635840 0.75660189 0.131428359 -0.44100984 -0.121010721
#> [18,] 0.7364927 0.699547511 0.51203773 -0.265761130 -0.22924277 -0.095761547
#> [19,] -1.1850170 0.300466200 0.14346126 -1.526977483 0.06869875 0.710089752
#> [20,] -1.4390656 -0.147557539 1.22983008 0.341807486 0.21492515 0.545779712
#> [21,] 0.3326983 1.459383292 1.07917521 -0.766536942 -0.26974278 0.137300450
#> [22,] -1.2838413 0.228232572 -0.81189728 0.112113284 1.24971859 -0.519868578
#> [23,] 0.9762797 0.792728055 0.61416007 -0.026280577 -1.58598821 -0.665173114
#> [24,] -2.3558246 -1.146802277 1.09018353 0.784478257 1.20560305 0.491817441
#> [25,] -0.5905978 -0.284407470 -0.84024689 0.182976076 1.35912630 0.311267458
try(predict(modpls,newdata=Xpine_supNA,type="scores",comps=8))
#> Error in predict.plsRmodel(modpls, newdata = Xpine_supNA, type = "scores", :
#> Cannot predict using more components than extracted.
# }