
Non-parametric tilted bootstrap for PLS generalized linear regression models
Source:R/tilt.bootplsglm.R
tilt.bootplsglm.RdProvides a wrapper for the bootstrap function tilt.boot from the
boot R package.
Implements non-parametric tilted bootstrap for PLS
generalized linear regression models by case resampling : the
tilt.boot function will run an initial bootstrap with equal
resampling probabilities (if required) and will use the output of the
initial run to find resampling probabilities which put the value of the
statistic at required values. It then runs an importance resampling
bootstrap using the calculated probabilities as the resampling distribution.
Arguments
- object
An object of class
plsRbetamodelto bootstrap- typeboot
The type of bootstrap. Either (Y,X) boostrap (
typeboot="plsmodel") or (Y,T) bootstrap (typeboot="fmodel_np"). Defaults to (Y,T) resampling.- statistic
A function which when applied to data returns a vector containing the statistic(s) of interest.
statisticmust take at least two arguments. The first argument passed will always be the original data. The second will be a vector of indices, frequencies or weights which define the bootstrap sample. Further, if predictions are required, then a third argument is required which would be a vector of the random indices used to generate the bootstrap predictions. Any further arguments can be passed to statistic through the...argument.- R
The number of bootstrap replicates. Usually this will be a single positive integer. For importance resampling, some resamples may use one set of weights and others use a different set of weights. In this case
Rwould be a vector of integers where each component gives the number of resamples from each of the rows of weights.- alpha
The alpha level to which tilting is required. This parameter is ignored if
R[1]is 0 or ifthetais supplied, otherwise it is used to find the values ofthetaas quantiles of the initial uniform bootstrap. In this caseR[1]should be large enough thatmin(c(alpha, 1-alpha))*R[1] > 5, if this is not the case then a warning is generated to the effect that thethetaare extreme values and so the tilted output may be unreliable.- sim
A character string indicating the type of simulation required. Possible values are
"ordinary"(the default),"balanced","permutation", or"antithetic".- stype
A character string indicating what the second argument of
statisticrepresents. Possible values of stype are"i"(indices - the default),"f"(frequencies), or"w"(weights).- index
The index of the statistic of interest in the output from
statistic. By default the first element of the output ofstatisticis used.- stabvalue
Upper bound for the absolute value of the coefficients.
- ...
ny further arguments can be passed to
statistic.
Author
Frédéric Bertrand
frederic.bertrand@lecnam.net
https://fbertran.github.io/homepage/
Examples
# \donttest{
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
dataset <- cbind(y=yaze_compl,Xaze_compl)
# Lazraq-Cleroux PLS bootstrap Classic
aze_compl.tilt.boot <- tilt.bootplsglm(plsRglm(yaze_compl,Xaze_compl,3,
modele="pls-glm-logistic", family=NULL), statistic=coefs.plsRglm, R=c(499, 100, 100),
alpha=c(0.025, 0.975), sim="ordinary", stype="i", index=1)
#> ____************************************************____
#>
#> Family: binomial
#> Link function: logit
#>
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
boxplots.bootpls(aze_compl.tilt.boot,1:2)
aze_compl.tilt.boot2 <- tilt.bootplsglm(plsRglm(yaze_compl,Xaze_compl,3,
modele="pls-glm-logistic"), statistic=coefs.plsRglm, R=c(499, 100, 100),
alpha=c(0.025, 0.975), sim="ordinary", stype="i", index=1)
#> ____************************************************____
#>
#> Family: binomial
#> Link function: logit
#>
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
boxplots.bootpls(aze_compl.tilt.boot2,1:2)
aze_compl.tilt.boot3 <- tilt.bootplsglm(plsRglm(yaze_compl,Xaze_compl,3,
modele="pls-glm-family", family=binomial), statistic=coefs.plsRglm, R=c(499, 100, 100),
alpha=c(0.025, 0.975), sim="ordinary", stype="i", index=1)
#> ____************************************************____
#>
#> Family: binomial
#> Link function: logit
#>
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
boxplots.bootpls(aze_compl.tilt.boot3,1:2)
# PLS bootstrap balanced
aze_compl.tilt.boot4 <- tilt.bootplsglm(plsRglm(yaze_compl,Xaze_compl,3,
modele="pls-glm-logistic"), statistic=coefs.plsRglm, R=c(499, 100, 100),
alpha=c(0.025, 0.975), sim="balanced", stype="i", index=1)
#> ____************************************************____
#>
#> Family: binomial
#> Link function: logit
#>
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
boxplots.bootpls(aze_compl.tilt.boot4,1:2)
# }