
Plot method for table of summary of cross validated plsR models
Source:R/plot.table.summary.cv.plsRmodel.R
plot.table.summary.cv.plsRmodel.Rd
This function provides a table method for the class
"summary.cv.plsRmodel"
References
Nicolas Meyer, Myriam Maumy-Bertrand et Frédéric Bertrand (2010). Comparing the linear and the logistic PLS regression with qualitative predictors: application to allelotyping data. Journal de la Societe Francaise de Statistique, 151(2), pages 1-18. https://www.numdam.org/item/JSFS_2010__151_2_1_0/
Author
Frédéric Bertrand
frederic.bertrand@lecnam.net
https://fbertran.github.io/homepage/
Examples
data(Cornell)
bbb <- cv.plsR(Y~.,data=Cornell,nt=6,K=6,NK=5, verbose=FALSE)
plot(cvtable(summary(bbb)),type="CVQ2")
#> ____************************************************____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
#>
#> NK: 1, 2, 3, 4, 5
#>
#> CV Q2 criterion:
#> 0 1
#> 0 5
#>
#> CV Press criterion:
#> 1 2 3 4
#> 0 0 4 1
rm(list=c("bbb"))
# \donttest{
data(Cornell)
plot(cvtable(summary(cv.plsR(Y~.,data=Cornell,nt=6,K=6,NK=100, verbose=FALSE))),type="CVQ2")
#> ____************************************************____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
#>
#> NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
#> NK: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
#> NK: 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
#> NK: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
#> NK: 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
#> NK: 51, 52, 53, 54, 55, 56, 57, 58, 59, 60
#> NK: 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
#> NK: 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
#> NK: 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
#> NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
#>
#> CV Q2 criterion:
#> 0 1 2
#> 0 89 11
#>
#> CV Press criterion:
#> 1 2 3 4 5
#> 0 0 33 55 12
# }