R/aic.dof.R
, R/bic.dof.R
, R/gmdl.dof.R
aic.dof.Rd
This function computes the Akaike and Bayesian Information Criteria and the Generalized minimum description length.
aic.dof(RSS, n, DoF, sigmahat) bic.dof(RSS, n, DoF, sigmahat) gmdl.dof(sigmahat, n, DoF, yhat)
RSS | vector of residual sum of squares. |
---|---|
n | number of observations. |
DoF | vector of Degrees of Freedom. The length of |
sigmahat | Estimated model error. The length of |
yhat | vector of squared norm of Yhat. The length of |
numerical values of the requested AIC, BIC or GMDL.
The gmdl criterion is defined as $$gmdl=\frac{n}{2}log(S)+\frac{DoF}{2}log(F)+\frac{1}{2}log(n)$$ with $$S=\hat\sigma^2$$
M. Hansen, B. Yu. (2001). Model Selection and Minimum Descripion
Length Principle, Journal of the American Statistical Association,
96, 746-774.
N. Kraemer, M. Sugiyama. (2011). The Degrees of Freedom of
Partial Least Squares Regression. Journal of the American Statistical
Association, 106(494), 697-705.
N. Kraemer, M.L. Braun, Kernelizing PLS,
Degrees of Freedom, and Efficient Model Selection, Proceedings of the
24th International Conference on Machine Learning, Omni Press, (2007)
441-448.
plsR.dof
for degrees of freedom computation and
infcrit.dof
for computing information criteria directly from a
previously fitted plsR model.
Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
#> ____************************************************____ #> ____Component____ 1 ____ #> ____Component____ 2 ____ #> ____Component____ 3 ____ #> ____Component____ 4 ____ #> ____Predicting X without NA neither in X nor in Y____ #> ****________________________________________________**** #>#> [,1] [,2] [,3] [,4] [,5] #> [1,] 46.07088 4.569969 2.107546 0.8467795 0.8232505bic.dof(modpls$RSS,modpls$nr,dof.object$DoF,dof.object$sigmahat)#> [,1] [,2] [,3] [,4] [,5] #> [1,] 47.78935 4.955816 2.394933 0.9628191 0.9357846gmdl.dof(dof.object$sigmahat,modpls$nr,dof.object$DoF,dof.object$yhat)#> [1] 27.59461 21.34020 27.40202 24.40842 24.23105naive.object <- plsR.dof(modpls,naive=TRUE) aic.dof(modpls$RSS,modpls$nr,naive.object$DoF,naive.object$sigmahat)#> [,1] [,2] [,3] [,4] [,5] #> [1,] 46.07088 4.169957 1.537029 0.7363469 0.8721072bic.dof(modpls$RSS,modpls$nr,naive.object$DoF,naive.object$sigmahat)#> [,1] [,2] [,3] [,4] [,5] #> [1,] 47.78935 4.45882 1.686092 0.8256118 0.9964867gmdl.dof(naive.object$sigmahat,modpls$nr,naive.object$DoF,naive.object$yhat)#> [1] 27.59461 18.37545 17.71117 19.01033 24.16510