Uses gamlss::ri() (L1 penalty) in a gamlss(dist = BE) mean submodel to
select variables. The helper works on complete cases of X/Y, targets the
mean component, and does not yet expose offset handling.
Usage
betareg_lasso_gamlss(
X,
Y,
method = c("ML", "GAIC"),
k = 2,
degf = NULL,
lambda = NULL,
trace = FALSE
)Arguments
- X
Numeric matrix (n × p) of mean-submodel predictors.
- Y
Numeric response in (0,1). Values are squeezed to (0,1) internally.
- method
"ML"or"GAIC"(seegamlss::ri).- k
Penalty multiplier for GAIC when
method = "GAIC".- degf
Optional degrees of freedom for the L1 term.
- lambda
Optional penalty strength.
- trace
Logical; print stepwise trace.
Value
Named numeric vector of coefficients (Intercept) + colnames(X),
with 0 for unselected variables.