Skip to contents

SelectBoost.beta 0.4.5

  • Added a pseudo-code vignette, refreshed the README with workflow details, and expanded the unit test suite for the new helpers.

  • Fixed code and descriptions to get rid of notes during CRAN checks.

  • Enabled optional parallel resampling in sb_beta()/sb_resample_groups() via future.apply, added S3 print/summary/autoplot helpers for sb_beta results, and documented the new behaviour in the README.

  • Extended the stepwise beta selectors to handle observation weights and precision-submodel search, exposing precision coefficients in the returned paths.

  • Added reproducible resampling caches and quality diagnostics to sb_resample_groups()/sb_beta(), including interval-response support that reuses pseudo-responses across correlation thresholds.

  • Documented interval workflows more prominently by adding sb_beta_interval(), expanding the README/CRAN vignette guidance for selector choice and interval stability, and clarifying comparison-helper outputs and response squeezing.

SelectBoost.beta 0.4.4

  • Add NEWS.md documenting development history.

SelectBoost.beta 0.4.3

  • Added sb_beta() to run the full SelectBoost correlated-resampling loop with beta-regression selectors, plus a vignette illustrating the workflow.
  • Added vignette section demonstrating the extended simulator and interval selection.

SelectBoost.beta 0.4.2

  • New simulation_DATA() to generate interval-valued Beta-regression data:
    • interval = "jitter" (symmetric) or "quantile" (Beta quantile intervals).
    • Works with fastboost_interval(); added a small vignette and unit test.
    • Supports mixed mechanisms (row-wise jitter vs quantile), asymmetric jitter widths (delta_low/delta_high), asymmetric quantile coverage (alpha_low/alpha_high), covariate-driven parameters (accept functions of (mu, X)), and optional missing bounds per row (na_rate, na_side).

SelectBoost.beta 0.4.1

SelectBoost.beta 0.4.0

  • Initial beta-regression integration for SelectBoost:
    • Stepwise AIC, BIC, and AICc wrappers around betareg.
    • GAMLSS LASSO (gamlss::ri) and optional Elastic-Net (gamlss.lasso::gnet).
    • Pure glmnet (IRLS + weighted Gaussian ENet) with optional prestandardize.
    • fastboost_interval() prototype for interval responses.
    • First vignette + roxygenized docs.