SelectBoost.beta 0.4.5
Added a pseudo-code vignette, refreshed the README with workflow details, and expanded the unit test suite for the new helpers.
Fixed code and descriptions to get rid of notes during CRAN checks.
Enabled optional parallel resampling in
sb_beta()/sb_resample_groups()viafuture.apply, added S3 print/summary/autoplot helpers forsb_betaresults, and documented the new behaviour in the README.Extended the stepwise beta selectors to handle observation weights and precision-submodel search, exposing precision coefficients in the returned paths.
Added reproducible resampling caches and quality diagnostics to
sb_resample_groups()/sb_beta(), including interval-response support that reuses pseudo-responses across correlation thresholds.Documented interval workflows more prominently by adding
sb_beta_interval(), expanding the README/CRAN vignette guidance for selector choice and interval stability, and clarifying comparison-helper outputs and response squeezing.
SelectBoost.beta 0.4.3
- Added
sb_beta()to run the full SelectBoost correlated-resampling loop with beta-regression selectors, plus a vignette illustrating the workflow. - Added vignette section demonstrating the extended simulator and interval selection.
SelectBoost.beta 0.4.2
- New
simulation_DATA()to generate interval-valued Beta-regression data:-
interval = "jitter"(symmetric) or"quantile"(Beta quantile intervals). - Works with
fastboost_interval(); added a small vignette and unit test. - Supports mixed mechanisms (row-wise jitter vs quantile), asymmetric jitter widths (
delta_low/delta_high), asymmetric quantile coverage (alpha_low/alpha_high), covariate-driven parameters (accept functions of(mu, X)), and optional missing bounds per row (na_rate,na_side).
-
SelectBoost.beta 0.4.1
-
Comparison helpers and visualizations:
-
compare_selectors_single(),compare_selectors_bootstrap()to run all selectors (AIC/BIC/AICc, GAMLSS LASSO/ENet*, GLMNET) and compute selection frequencies. -
plot_compare_coeff(),plot_compare_freq()heatmaps to compare selectors side by side. - Vignette expanded to include simulated data and two real-ish datasets after scaling to (0,1).
-
- Kept
fastboost_interval()(interval response stability selection), C++ IRLS speedups, andprestandardizeoption forbetareg_glmnet().- ENet requires
gamlss.lassoif installed.
- ENet requires
SelectBoost.beta 0.4.0
- Initial beta-regression integration for SelectBoost:
- Stepwise AIC, BIC, and AICc wrappers around
betareg. -
GAMLSS LASSO (
gamlss::ri) and optional Elastic-Net (gamlss.lasso::gnet). - Pure glmnet (IRLS + weighted Gaussian ENet) with optional prestandardize.
-
fastboost_interval()prototype for interval responses. - First vignette + roxygenized docs.
- Stepwise AIC, BIC, and AICc wrappers around