Skip to contents

These helpers expose the individual stages of the SelectBoost workflow so that beta-regression selectors can be combined with correlation-aware resampling directly from SelectBoost.beta. They normalise the design matrix, derive correlation structures, form groups of correlated predictors, generate Gaussian surrogates that mimic the observed dependency structure, and apply a user-provided selector on each resampled design.

Usage

sb_normalize(X, center = NULL, scale = NULL, eps = 1e-08)

sb_compute_corr(X, corrfunc = "cor")

sb_group_variables(corr_mat, c0)

Arguments

X

Numeric matrix of predictors.

center

Optional centering vector recycled to the number of columns. Defaults to the column means of X.

scale

Optional scaling vector recycled to the number of columns. Defaults to the column-wise \(\ell_2\) norms of the centred matrix.

eps

Small positive constant used when normalising columns.

corrfunc

Function or character string used to compute pairwise associations. Defaults to "cor".

corr_mat

Numeric matrix of associations.

c0

Threshold applied to the absolute correlations.

Value

sb_normalize() returns a centred, \(\ell_2\)-scaled copy of X.

sb_compute_corr() returns the association matrix.

sb_group_variables() returns a list of integer vectors, one per variable, describing the correlated group it belongs to.

Examples

sb_normalize(matrix(rnorm(20), 5))
#>            [,1]        [,2]        [,3]       [,4]
#> [1,]  0.3463524 -0.64667648  0.50238575 -0.1561321
#> [2,] -0.4636281 -0.19778617  0.06741316  0.3640875
#> [3,] -0.4517346  0.17420391 -0.49126825  0.4258594
#> [4,]  0.6712470  0.71441803 -0.53858287 -0.7969315
#> [5,] -0.1022367 -0.04415928  0.46005220  0.1631167
#> attr(,"center")
#> [1] -0.2391497  0.8453661  1.1584252 -0.6895804
#> attr(,"scale")
#> [1] 1.137317 1.709715 1.679133 2.070999