Partial Least Squares Components for Cox Models (fast backend)
Source:R/big_fast.R
big_pls_cox_fast.RdCompute PLS components for Cox models, using a fast C++ backend for both
in-memory matrices and bigmemory::big.matrix objects.
Usage
big_pls_cox_fast(
X,
time,
status,
ncomp = 2L,
control = survival::coxph.control(),
keepX = NULL
)Arguments
- X
A numeric matrix or a
bigmemory::big.matrixobject containing the predictors.- time
Numeric vector of survival times.
- status
Integer (0/1) vector of event indicators.
- ncomp
Number of latent components to compute.
- control
Optional list passed to
survival::coxph.control.- keepX
Optional integer vector specifying the number of variables to retain (naive sparsity) in each component. A value of zero keeps all predictors. If a single integer is supplied it is recycled across components.
Value
A list with the computed scores, loadings, weights, scaling information and the
fitted Cox model returned by survival::coxph.fit.
References
Maumy, M., Bertrand, F. (2023). PLS models and their extension for big data. Joint Statistical Meetings (JSM 2023), Toronto, ON, Canada.
Maumy, M., Bertrand, F. (2023). bigPLS: Fitting and cross-validating PLS-based Cox models to censored big data. BioC2023 — The Bioconductor Annual Conference, Dana-Farber Cancer Institute, Boston, MA, USA. Poster. https://doi.org/10.7490/f1000research.1119546.1
Bastien, P., Bertrand, F., Meyer, N., & Maumy-Bertrand, M. (2015). Deviance residuals-based sparse PLS and sparse kernel PLS for censored data. Bioinformatics, 31(3), 397–404. doi:10.1093/bioinformatics/btu660
Bertrand, F., Bastien, P., Meyer, N., & Maumy-Bertrand, M. (2014). PLS models for censored data. In Proceedings of UseR! 2014 (p. 152).