Predict method for big-memory PLS-Cox models
Usage
# S3 method for class 'big_pls_cox'
predict(
object,
newdata = NULL,
type = c("link", "risk", "response", "components"),
comps = NULL,
coef = NULL,
...
)
# S3 method for class 'big_pls_cox_gd'
predict(
object,
newdata = NULL,
type = c("link", "risk", "response", "components"),
comps = NULL,
coef = NULL,
...
)Arguments
- object
A model fitted with
big_pls_cox().- newdata
Optional matrix, data frame or
bigmemory::big.matrixcontaining predictors to project on the latent space. WhenNULLthe training scores are used.- type
Type of prediction:
"link"for the linear predictor,"risk"or"response"for the exponential of the linear predictor, or"components"to obtain latent scores.- comps
Integer vector indicating which components to use. Defaults to all available components.
- coef
Optional coefficient vector overriding the fitted Cox model coefficients.
- ...
Unused.
References
Maumy, M., Bertrand, F. (2023). PLS models and their extension for big data. Joint Statistical Meetings (JSM 2023), Toronto, ON, Canada.
Maumy, M., Bertrand, F. (2023). bigPLS: Fitting and cross-validating PLS-based Cox models to censored big data. BioC2023 — The Bioconductor Annual Conference, Dana-Farber Cancer Institute, Boston, MA, USA. Poster. https://doi.org/10.7490/f1000research.1119546.1
Bastien, P., Bertrand, F., Meyer, N., & Maumy-Bertrand, M. (2015). Deviance residuals-based sparse PLS and sparse kernel PLS for censored data. Bioinformatics, 31(3), 397–404. doi:10.1093/bioinformatics/btu660
Bertrand, F., Bastien, P., Meyer, N., & Maumy-Bertrand, M. (2014). PLS models for censored data. In Proceedings of UseR! 2014 (p. 152).