This dataset provides explantory variables simulations and censoring status.
Format
A data frame with 1000 observations on the following 11 variables.
- status
a binary vector
- X1
a numeric vector
- X2
a numeric vector
- X3
a numeric vector
- X4
a numeric vector
- X5
a numeric vector
- X6
a numeric vector
- X7
a numeric vector
- X8
a numeric vector
- X9
a numeric vector
- X10
a numeric vector
References
Maumy, M., Bertrand, F. (2023). PLS models and their extension for big data. Joint Statistical Meetings (JSM 2023), Toronto, ON, Canada.
Maumy, M., Bertrand, F. (2023). bigPLS: Fitting and cross-validating PLS-based Cox models to censored big data. BioC2023 — The Bioconductor Annual Conference, Dana-Farber Cancer Institute, Boston, MA, USA. Poster. https://doi.org/10.7490/f1000research.1119546.1
Bastien, P., Bertrand, F., Meyer, N., and Maumy-Bertrand, M. (2015). Deviance residuals-based sparse PLS and sparse kernel PLS for binary classification and survival analysis. BMC Bioinformatics, 16, 211.