
Data generating function for univariate gamma plsR models
Source:R/simul_data_UniYX_gamma.R
simul_data_UniYX_gamma.Rd
This function generates a single univariate gamma response value \(Ygamma\) and a vector of explanatory variables \((X_1,\ldots,X_{totdim})\) drawn from a model with a given number of latent components.
Arguments
- totdim
Number of columns of the X vector (from
ncomp
to hardware limits)- ncomp
Number of latent components in the model (to use noise, select ncomp=3)
- jvar
First variance parameter
- lvar
Second variance parameter
- link
Character specification of the link function in the mean model (mu). Currently, "
inverse
", "log
" and "identity
" are supported. Alternatively, an object of class "link-glm" can be supplied.- offset
Offset on the linear scale
Details
This function should be combined with the replicate function to give rise to a larger dataset. The algorithm used is a modification of a port of the one described in the article of Li which is a multivariate generalization of the algorithm of Naes and Martens.
References
T. Naes, H. Martens, Comparison of prediction methods for
multicollinear data, Commun. Stat., Simul. 14 (1985) 545-576.
Morris, Elaine B. Martin, Model selection for partial least squares
regression, Chemometrics and Intelligent Laboratory Systems 64 (2002),
79-89, doi:10.1016/S0169-7439(02)00051-5
.
A new bootstrap-based stopping criterion in PLS component construction,
J. Magnanensi, M. Maumy-Bertrand, N. Meyer and F. Bertrand (2016), in The Multiple Facets of Partial Least Squares and Related Methods,
doi:10.1007/978-3-319-40643-5_18
A new universal resample-stable bootstrap-based stopping criterion for PLS component construction,
J. Magnanensi, F. Bertrand, M. Maumy-Bertrand and N. Meyer, (2017), Statistics and Computing, 27, 757–774.
doi:10.1007/s11222-016-9651-4
New developments in Sparse PLS regression, J. Magnanensi, M. Maumy-Bertrand,
N. Meyer and F. Bertrand, (2021), Frontiers in Applied Mathematics and Statistics,
doi:10.3389/fams.2021.693126
.
Author
Jeremy Magnanensi, Frédéric Bertrand
frederic.bertrand@lecnam.net
https://fbertran.github.io/homepage/
Jérémy Magnanensi, Frédéric Bertrand
frederic.bertrand@lecnam.net
https://fbertran.github.io/homepage/
Examples
set.seed(314)
ncomp=rep(3,100)
totdimpos=7:50
totdim=sample(totdimpos,100,replace=TRUE)
l=3.01
#for (l in seq(3.01,15.51,by=0.5)) {
j=3.01
#for (j in seq(3.01,9.51,by=0.5)) {
i=44
#for ( i in 1:100){
set.seed(i)
totdimi<-totdim[i]
ncompi<-ncomp[i]
datasim <- t(replicate(200,simul_data_UniYX_gamma(totdimi,ncompi,j,l)))
#}
#}
#}
pairs(datasim)
rm(i,j,l,totdimi,ncompi,datasim)