Provides (weighted) Partial least squares Regression for generalized linear models and repeated k-fold cross-validation of such models using various criteria <arXiv:1810.01005>. It allows for missing data in the explanatory variables. Bootstrap confidence intervals constructions are also available.

References

A short paper that sums up some of features of the package is available on https://arxiv.org/, Frédéric Bertrand and Myriam Maumy-Bertrand (2018), "plsRglm: Partial least squares linear and generalized linear regression for processing incomplete datasets by cross-validation and bootstrap techniques with R", *arxiv*, https://arxiv.org/abs/1810.01005, https://github.com/fbertran/plsRglm/ et https://fbertran.github.io/plsRglm/

Examples

set.seed(314) library(plsRglm) data(Cornell) cv.modpls<-cv.plsR(Y~.,data=Cornell,nt=6,K=6)
#> NK: 1 #> Number of groups : 6 #> 1 #> ____************************************************____ #> ____Predicting X without NA neither in X nor in Y____ #> ____Component____ 1 ____ #> ____Component____ 2 ____ #> ____Component____ 3 ____ #> ____Component____ 4 ____ #> ____Component____ 5 ____ #> ____Component____ 6 ____ #> ****________________________________________________**** #> #> 2 #> ____************************************************____ #> ____Predicting X without NA neither in X nor in Y____ #> ____Component____ 1 ____ #> ____Component____ 2 ____ #> ____Component____ 3 ____ #> ____Component____ 4 ____ #> ____Component____ 5 ____ #> ____Component____ 6 ____ #> ****________________________________________________**** #> #> 3 #> ____************************************************____ #> ____Predicting X without NA neither in X nor in Y____ #> ____Component____ 1 ____ #> ____Component____ 2 ____ #> ____Component____ 3 ____ #> ____Component____ 4 ____ #> ____Component____ 5 ____ #> ____Component____ 6 ____ #> ****________________________________________________**** #> #> 4 #> ____************************************************____ #> ____Predicting X without NA neither in X nor in Y____ #> ____Component____ 1 ____ #> ____Component____ 2 ____ #> ____Component____ 3 ____ #> ____Component____ 4 ____ #> ____Component____ 5 ____ #> Warning : 1 2 3 4 5 6 7 < 10^{-12} #> Warning only 5 components could thus be extracted #> ****________________________________________________**** #> #> 5 #> ____************************************************____ #> ____Predicting X without NA neither in X nor in Y____ #> ____Component____ 1 ____ #> ____Component____ 2 ____ #> ____Component____ 3 ____ #> ____Component____ 4 ____ #> ____Component____ 5 ____ #> ____Component____ 6 ____ #> ****________________________________________________**** #> #> 6 #> ____************************************************____ #> ____Predicting X without NA neither in X nor in Y____ #> ____Component____ 1 ____ #> ____Component____ 2 ____ #> ____Component____ 3 ____ #> ____Component____ 4 ____ #> ____Component____ 5 ____ #> ____Component____ 6 ____ #> ****________________________________________________**** #>
res.cv.modpls<-cvtable(summary(cv.modpls))
#> ____************************************************____ #> ____Component____ 1 ____ #> ____Component____ 2 ____ #> ____Component____ 3 ____ #> ____Component____ 4 ____ #> ____Component____ 5 ____ #> ____Component____ 6 ____ #> ____Predicting X without NA neither in X nor in Y____ #> ****________________________________________________**** #> #> #> NK: 1 #> #> CV Q2 criterion: #> 0 1 #> 0 1 #> #> CV Press criterion: #> 1 2 3 #> 0 0 1