Beta regression Elastic-Net via GAMLSS (gamlss.lasso)
Source:R/var_select_gamlss.R
betareg_enet_gamlss.RdUses gamlss.lasso::gnet() to fit ENet on the mean submodel of
gamlss(dist = BE). The routine assumes complete cases and does not expose
offsets or precision-model terms.
Arguments
- X
Numeric matrix (n × p) of mean-submodel predictors.
- Y
Numeric response in (0,1). Values are squeezed to (0,1) internally.
- method
"IC"(information criterion) or"CV".- ICpen
Penalty for
"IC"selection:"BIC","AIC", or"HQC".- alpha
Elastic-net mixing (1 = LASSO, 0 = ridge).
- trace
Logical; print stepwise trace.
Value
Named numeric vector of coefficients as in betareg_lasso_gamlss().