Skip to contents

This vignette provides quick timing comparisons across engines on a synthetic dataset. Timings are indicative (single run) and depend on your machine and BLAS.

What you’ll learn

  • How to benchmark sb_gamlss() with different engine settings (stepwise, glmnet, grpreg, sgl).
  • How to collect elapsed timings via system.time() and visualise them with base R plots.
  • How to extend the template to include your own custom configurations (e.g., alternative glmnet_alpha).
library(gamlss)
#> Loading required package: splines
#> Loading required package: gamlss.data
#> 
#> Attaching package: 'gamlss.data'
#> The following object is masked from 'package:datasets':
#> 
#>     sleep
#> Loading required package: gamlss.dist
#> Loading required package: nlme
#> Loading required package: parallel
#>  **********   GAMLSS Version 5.5-0  **********
#> For more on GAMLSS look at https://www.gamlss.com/
#> Type gamlssNews() to see new features/changes/bug fixes.
library(SelectBoost.gamlss)

set.seed(123)
n <- 800
p <- 30
X <- replicate(p, rnorm(n))
colnames(X) <- paste0("x", 1:p)
eta <- 1 + X[,1]*1.0 - X[,3]*1.2 + X[,5]*0.8
y <- gamlss.dist::rNO(n, mu = eta, sigma = 1)
dat <- data.frame(y, X)

engines <- list(
  list(name="stepGAIC", args=list(engine="stepGAIC")),
  list(name="glmnet-lasso", args=list(engine="glmnet", glmnet_alpha=1)),
  list(name="grpreg", args=list(engine="grpreg", grpreg_penalty="grLasso")),
  list(name="sgl", args=list(engine="sgl", sgl_alpha=0.9))
)

res <- data.frame(engine=character(), elapsed=numeric(), stringsAsFactors = FALSE)

for (e in engines) {
  cat("Running", e$name, "...\n")
  t <- system.time({
    fit <- sb_gamlss(
      y ~ 1, data = dat, family = gamlss.dist::NO(),
      mu_scope = as.formula(paste("~", paste(colnames(X), collapse = " + "))), 
      B = 40, pi_thr = 0.6, pre_standardize = TRUE, trace = FALSE
    )
    # merge engine-specific args and refit quickly with small B to avoid overuse
    fit <- do.call(sb_gamlss, modifyList(list(
      formula = y ~ 1, data = dat, family = gamlss.dist::NO(),
      mu_scope = as.formula(paste("~", paste(colnames(X), collapse = " + "))), 
      B = 40, pi_thr = 0.6, pre_standardize = TRUE, trace = FALSE
    ), e$args))
  })
  res <- rbind(res, data.frame(engine=e$name, elapsed=t[["elapsed"]]))
}
#> Running stepGAIC ...
#> Running glmnet-lasso ...
#> Running grpreg ...
#> Running sgl ...

print(res)
#>         engine elapsed
#> 1     stepGAIC  68.505
#> 2 glmnet-lasso  34.076
#> 3       grpreg  36.121
#> 4          sgl 260.046

# simple barplot
op <- par(mar=c(8,4,2,1)); barplot(res$elapsed, names.arg = res$engine, las = 2,
     ylab = "Elapsed (s)", main = "Engine wall time (n=800, p=30, B=40)"); par(op)