Dispatches to a dense (Arm/BLAS) backend for in-memory matrices or to a streaming big.matrix backend when X (or Y) is a big.matrix. Algorithm can be chosen between: "simpls" (default), "nipals", "kernelpls", "widekernelpls", "rkhs" (Rosipal & Trejo), "klogitpls", "sparse_kpls", "rkhs_xy" (double RKHS), and "kf_pls" (Kalman-filter PLS, streaming).
The "kernelpls" paths now include a streaming XX'
variant for big.matrix inputs, with an optional row-chunking loop
controlled by chunk_cols.
Usage
pls_fit(
X,
y,
ncomp,
tol = 1e-08,
backend = c("auto", "arma", "bigmem"),
mode = c("auto", "pls1", "pls2"),
algorithm = c("auto", "simpls", "nipals", "kernelpls", "widekernelpls", "rkhs",
"klogitpls", "sparse_kpls", "rkhs_xy", "kf_pls"),
scores = c("none", "r", "big"),
chunk_size = 10000L,
chunk_cols = NULL,
scores_name = "scores",
scores_target = c("auto", "new", "existing"),
scores_bm = NULL,
scores_backingfile = NULL,
scores_backingpath = NULL,
scores_descriptorfile = NULL,
scores_colnames = NULL,
return_scores_descriptor = FALSE,
coef_threshold = NULL,
kernel = c("linear", "rbf", "poly", "sigmoid"),
gamma = 1,
degree = 3L,
coef0 = 0,
approx = c("none", "nystrom", "rff"),
approx_rank = NULL,
class_weights = NULL
)Arguments
- X
numeric matrix or
bigmemory::big.matrix- y
numeric vector/matrix or
big.matrix- ncomp
number of latent components
- tol
numeric tolerance used in the core solver
- backend
one of
"auto","arma","bigmem"- mode
one of
"auto","pls1","pls2"- algorithm
one of
"auto","simpls","nipals","kernelpls","widekernelpls","rkhs","klogitpls","sparse_kpls","rkhs_xy","kf_pls"- scores
one of
"none","r","big"- chunk_size
chunk size for the bigmem backend
- chunk_cols
columns chunk size for the bigmem backend
- scores_name
name for dense scores (or output big.matrix)
- scores_target
one of
"auto","new","existing"- scores_bm
optional existing big.matrix or descriptor for scores
- scores_backingfile
Character; file name for file-backed scores (when
scores="big").- scores_backingpath
Character; directory for the file-backed scores. Defaults to
getwd()ortempdir()in streamed predict, unless overridden.- scores_descriptorfile
Character; descriptor file name for the file-backed scores.
- scores_colnames
optional character vector for score column names
- return_scores_descriptor
logical; if TRUE and scores is big.matrix, add
$scores_descriptor- coef_threshold
Optional non-negative value used to hard-threshold the fitted coefficients after model estimation. When supplied, absolute coefficients strictly below the threshold are set to zero via
pls_threshold().- kernel
kernel name for RKHS/KPLS (
"linear","rbf","poly","sigmoid")- gamma
RBF/sigmoid/poly scale parameter
- degree
polynomial degree
- coef0
polynomial/sigmoid bias
- approx
kernel approximation:
"none","nystrom","rff"- approx_rank
rank (columns / features) for the approximation
- class_weights
optional numeric weights for classes in
klogitpls