Skip to contents

Naive sparsity control by coefficient thresholding

Usage

pls_threshold(object, threshold)

Arguments

object

A fitted PLS model.

threshold

Values below this absolute magnitude are set to zero.

Value

A modified copy of object with thresholded coefficients.

Examples

set.seed(123)
X <- matrix(rnorm(40), nrow = 10)
y <- X[, 1] - 0.5 * X[, 2] + rnorm(10, sd = 0.1)
fit <- pls_fit(X, y, ncomp = 2)
pls_threshold(fit, threshold = 0.05)
#> $coefficients
#>            [,1]
#> [1,]  0.7945827
#> [2,] -0.3874556
#> [3,]  0.1205194
#> [4,]  0.3708827
#> 
#> $intercept
#> [1] -0.07729456
#> 
#> $x_weights
#>              [,1]       [,2]
#> [1,]  0.278021666  0.2224039
#> [2,]  0.002259737 -0.2982192
#> [3,] -0.039744939  0.1465173
#> [4,]  0.126996697  0.1076294
#> 
#> $x_loadings
#>           [,1]       [,2]
#> [1,]  2.803684  0.1385679
#> [2,]  1.818750 -2.3265396
#> [3,] -1.468176  1.6845482
#> [4,]  1.244542  0.2652412
#> 
#> $y_loadings
#>          [,1]     [,2]
#> [1,] 1.807709 1.312928
#> 
#> $x_means
#> [1]  0.07462564  0.20862196 -0.42455887  0.32204455
#> 
#> $y_means
#> [1] -0.03055689
#> 
#> $ncomp
#> [1] 2
#> 
#> $mode
#> [1] "pls1"
#> 
#> $algorithm
#> [1] "simpls"
#> 
#> $x_center
#> [1]  0.07462564  0.20862196 -0.42455887  0.32204455
#> 
#> $y_center
#> [1] -0.03055689
#> 
#> $X
#>              [,1]       [,2]       [,3]        [,4]
#>  [1,] -0.56047565  1.2240818 -1.0678237  0.42646422
#>  [2,] -0.23017749  0.3598138 -0.2179749 -0.29507148
#>  [3,]  1.55870831  0.4007715 -1.0260044  0.89512566
#>  [4,]  0.07050839  0.1106827 -0.7288912  0.87813349
#>  [5,]  0.12928774 -0.5558411 -0.6250393  0.82158108
#>  [6,]  1.71506499  1.7869131 -1.6866933  0.68864025
#>  [7,]  0.46091621  0.4978505  0.8377870  0.55391765
#>  [8,] -1.26506123 -1.9666172  0.1533731 -0.06191171
#>  [9,] -0.68685285  0.7013559 -1.1381369 -0.30596266
#> [10,] -0.44566197 -0.4727914  1.2538149 -0.38047100
#> 
#> $coef_threshold
#> [1] 0.05
#> 
#> attr(,"class")
#> [1] "big_plsr" "list"