
Extracts and computes information criteria and fits statistics for kfold cross validated partial least squares beta regression models
Source:R/kfolds2CVinfos_beta.R
kfolds2CVinfos_beta.Rd
This function extracts and computes information criteria and fits statistics for kfold cross validated partial least squares beta regression models for both formula or classic specifications of the model.
Arguments
- pls_kfolds
an object computed using
PLS_beta_kfoldcv
- MClassed
should number of miss classed be computed
Value
- list
table of fit statistics for first group partition
- list()
...
- list
table of fit statistics for last group partition
References
Frédéric Bertrand, Nicolas Meyer, Michèle Beau-Faller, Karim El Bayed, Izzie-Jacques Namer, Myriam Maumy-Bertrand (2013). Régression Bêta PLS. Journal de la Société Française de Statistique, 154(3):143-159. https://ojs-test.apps.ocp.math.cnrs.fr/index.php/J-SFdS/article/view/215
See also
kfolds2coeff
,
kfolds2Pressind
, kfolds2Press
,
kfolds2Mclassedind
and
kfolds2Mclassed
to extract and transforms results
from kfold cross validation.
Author
Frédéric Bertrand
frederic.bertrand@lecnam.net
https://fbertran.github.io/homepage/
Examples
if (FALSE) { # \dontrun{
data("GasolineYield",package="betareg")
bbb <- PLS_beta_kfoldcv_formula(yield~.,data=GasolineYield,nt=3,modele="pls-beta")
kfolds2CVinfos_beta(bbb)
} # }