Skip to contents

Introduction

This vignette illustrates the use of the Sobol4R package to compute Sobol indices for deterministic and stochastic versions of the classical Sobol g function.

The designs are generated with sensitivity::sobol and the models are provided by Sobol4R, in particular

  • sobol_g_function for the deterministic g function
  • sobol_g2_additive_noise for a version of the model with additive Gaussian noise
  • sobol_g2_with_covariate_noise for a version with covariate dependent noise

The stochastic models can be combined with the generic quantity of interest wrapper sobol4r_qoi.

Deterministic Sobol g function

Order 1 and Total via sensitivity::sobol()

n  <- 1e4
p  <- 8
X1 <- data.frame(matrix(runif(p * n), nrow = n))
X2 <- data.frame(matrix(runif(p * n), nrow = n))

sob_det <- sobol4r_design(X1 = X1, X2 = X2, order = 2, nboot = 50)

Y <- sobol_g_function(sob_det$X)
sensitivity::tell(sob_det, Y)
print(sob_det)
#> 
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#> 
#> Model runs: 100000 
#> 
#> First order indices:
#>       original          bias  std. error    min. c.i.  max. c.i.
#> X1 0.717660678 -0.0009932676 0.006036444  0.704737206 0.73253886
#> X2 0.185342302 -0.0020706753 0.014354599  0.154165726 0.21333266
#> X3 0.024134416 -0.0025884308 0.014211364 -0.007872698 0.05741629
#> X4 0.013559153 -0.0038402521 0.014099271 -0.016977087 0.04874150
#> X5 0.005864082 -0.0037560690 0.014028598 -0.022414985 0.04106775
#> X6 0.005796217 -0.0038042037 0.014036002 -0.022355436 0.04105654
#> X7 0.005778092 -0.0037573736 0.013989862 -0.022549033 0.04100004
#> X8 0.006151195 -0.0036990459 0.014049146 -0.021865015 0.04120230
#> 
#> Total indices:
#>        original          bias   std. error    min. c.i.    max. c.i.
#> X1 0.7684270334  1.348517e-03 1.095303e-02 7.451818e-01 0.7922941591
#> X2 0.2391940077  2.015426e-04 4.097996e-03 2.302565e-01 0.2478394129
#> X3 0.0333164459  6.195538e-05 6.267740e-04 3.199008e-02 0.0346766967
#> X4 0.0104979835  2.557619e-05 2.824431e-04 9.884158e-03 0.0109966841
#> X5 0.0001033816  1.375728e-09 1.732832e-06 1.000611e-04 0.0001068481
#> X6 0.0001053492 -1.117878e-07 2.656393e-06 9.829080e-05 0.0001102474
#> X7 0.0001039507  7.510483e-08 2.285392e-06 9.790305e-05 0.0001085273
#> X8 0.0001006685  2.460455e-07 2.009040e-06 9.605339e-05 0.0001040869
Sobol4R::autoplot(sob_det, ncol = 1)

Order 1 and Total via sensitivity::sobol2007()

n  <- 1e4
p  <- 8
X1 <- data.frame(matrix(runif(p * n), nrow = n))
X2 <- data.frame(matrix(runif(p * n), nrow = n))

sob_det_2007 <- sobol4r_design(
  X1    = X1,
  X2    = X2,
  nboot = 50,
  type  = "sobol2007"
)

Y <- sobol_g_function(sob_det_2007$X)
sensitivity::tell(sob_det_2007, Y)
print(sob_det_2007)
#> 
#> Call:
#> sensitivity::sobol2007(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#> 
#> Model runs: 100000 
#> 
#> First order indices:
#>         original          bias   std. error     min. c.i.    max. c.i.
#> X1  7.226361e-01  4.613664e-04 0.0250889263  0.6714746826 0.7732251982
#> X2  1.577506e-01  1.759382e-03 0.0147669207  0.1267157769 0.1960646433
#> X3  2.165769e-02 -1.967632e-04 0.0048301391  0.0107498709 0.0330404949
#> X4  6.966461e-03  2.491303e-04 0.0027234991  0.0010555430 0.0110881879
#> X5  2.104365e-04  5.952562e-05 0.0002402671 -0.0003020478 0.0005739324
#> X6  2.982284e-04  6.010743e-05 0.0002228694 -0.0003302314 0.0007606267
#> X7  5.419411e-05 -3.806394e-05 0.0001951958 -0.0002465745 0.0005861267
#> X8 -1.885046e-04  4.378118e-05 0.0002970498 -0.0009607355 0.0003931021
#> 
#> Total indices:
#>         original          bias   std. error     min. c.i.    max. c.i.
#> X1  0.8114688026  1.482182e-03 0.0209887057  0.7632449114 0.8584297401
#> X2  0.2657395655  9.298296e-04 0.0162802955  0.2268143380 0.3035468573
#> X3  0.0380832600  7.402175e-04 0.0070172023  0.0199547275 0.0506997801
#> X4  0.0080414206 -4.546740e-04 0.0040901847 -0.0006915014 0.0172996762
#> X5 -0.0000740697 -9.898440e-05 0.0004524606 -0.0010437911 0.0009069280
#> X6  0.0001245399 -8.659793e-05 0.0003678083 -0.0006133636 0.0011593635
#> X7  0.0001987163  2.279008e-05 0.0003327657 -0.0004079122 0.0007984449
#> X8  0.0007342818 -7.943007e-05 0.0004619398 -0.0003188098 0.0019252166
Sobol4R::autoplot(sob_det_2007)

Random effect on the output

We restrict the g function to the first two inputs and add a Gaussian noise term with zero mean and unit variance.

Order 1 and Total via sensitivity::sobol()

sob_noise_add <- sobol4r_design(X1 = X1[, 1:2], X2 = X2[, 1:2], order = 2, nboot = 50, type = "sobol")

Y <- sobol_g2_additive_noise(sob_noise_add$X)
sensitivity::tell(sob_noise_add, Y)
print(sob_noise_add)
#> 
#> Call:
#> sensitivity::sobol(model = NULL, X1 = X1, X2 = X2, order = order,     nboot = nboot)
#> 
#> Model runs: 40000 
#> 
#> Sobol indices
#>          original         bias std. error   min. c.i.  max. c.i.
#> X1    0.210591303  0.002895381 0.01339506  0.17772950 0.23133242
#> X2    0.077394970  0.001182011 0.01465379  0.04788607 0.10591187
#> X1*X2 0.004634588 -0.002890048 0.02552980 -0.05706284 0.06587072
Sobol4R::autoplot(sob_noise_add)

Order 1 and Total via sensitivity::sobol2007()

sob_noise_add <- sobol4r_design(X1 = X1[, 1:2], X2 = X2[, 1:2], nboot = 50, type = "sobol2007")

Y <- sobol_g2_additive_noise(sob_noise_add$X)
sensitivity::tell(sob_noise_add, Y)
print(sob_noise_add)
#> 
#> Call:
#> sensitivity::sobol2007(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#> 
#> Model runs: 40000 
#> 
#> First order indices:
#>      original          bias std. error  min. c.i.  max. c.i.
#> X1 0.22249900 -0.0007019890 0.02086091 0.18921641 0.27421970
#> X2 0.04947403  0.0009910796 0.01799606 0.01167035 0.08611989
#> 
#> Total indices:
#>     original          bias std. error min. c.i. max. c.i.
#> X1 0.9545870 -1.644061e-03 0.01536769 0.9247617 0.9938948
#> X2 0.7936756  7.622615e-05 0.01269614 0.7679734 0.8230877
Sobol4R::autoplot(sob_noise_add)

Quantity of interest based on repeated runs

Instead of a single noisy run, we can focus on a quantity of interest, here the conditional mean of the output given the inputs. This is approximated by repeated calls to the stochastic model.

Order 1 and Total via sensitivity::sobol()

sob_noise_const_qoi <- sobol4r_qoi_indices(
  model = sobol_g2_additive_noise,
  X1 = X1[, 1:2], 
  X2 = X2[, 1:2], 
  order = 2, 
  nboot = 50, 
  type = "sobol")
print(sob_noise_const_qoi)
#> 
#> Call:
#> sensitivity::sobol(model = NULL, X1 = X1, X2 = X2, order = order,     nboot = nboot)
#> 
#> Model runs: 40000 
#> 
#> Sobol indices
#>        original         bias std. error min. c.i. max. c.i.
#> X1    0.7281363 -0.002326129 0.01396703 0.7023478 0.7611659
#> X2    0.1593779  0.001107771 0.02101239 0.1111086 0.1996645
#> X1*X2 0.1115358  0.001362466 0.02579994 0.0601593 0.1660907
Sobol4R::autoplot(sob_noise_const_qoi)

Order 1 and Total via sensitivity::sobol2007()

sob_noise_const_qoi <- sobol4r_qoi_indices(
  model = sobol_g2_additive_noise,
  X1 = X1[, 1:2], 
  X2 = X2[, 1:2], 
  nboot = 50, 
  type = "sobol2007")
print(sob_noise_const_qoi)
#> 
#> Call:
#> sensitivity::sobol2007(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#> 
#> Model runs: 40000 
#> 
#> First order indices:
#>    original         bias  std. error min. c.i. max. c.i.
#> X1 0.778753 0.0041844030 0.013385447 0.7510859 0.8136224
#> X2 0.187627 0.0005980994 0.007046389 0.1712593 0.2009642
#> 
#> Total indices:
#>     original         bias  std. error min. c.i. max. c.i.
#> X1 0.8200828  0.002239187 0.009360912 0.7983630 0.8358809
#> X2 0.2540245 -0.001060357 0.006998130 0.2466031 0.2736040
Sobol4R::autoplot(sob_noise_const_qoi)

Covariate dependent noise

We now add a third input which controls the mean of the Gaussian noise term. The mean is equal to the third input, and the variance is fixed.

X1_cov <- data.frame(
  C1 = runif(n),
  C2 = runif(n),
  C3 = runif(n, min = 1, max = 100)
)
X2_cov <- data.frame(
  C1 = runif(n),
  C2 = runif(n),
  C3 = runif(n, min = 1, max = 100)
)

Order 1 and Total via sensitivity::sobol()

sob_cov_single <- sobol4r_design(X1 = X1_cov, X2 = X2_cov, order = 2, nboot = 50, type = "sobol")

Y <- sobol_g2_additive_noise(sob_cov_single$X)
sensitivity::tell(sob_cov_single, Y)
print(sob_cov_single)
#> 
#> Call:
#> sensitivity::sobol(model = NULL, X1 = X1, X2 = X2, order = order,     nboot = nboot)
#> 
#> Model runs: 70000 
#> 
#> Sobol indices
#>           original          bias std. error    min. c.i.  max. c.i.
#> C1     0.251783186  0.0003585397 0.01280945  0.219732278 0.27135547
#> C2     0.045268520  0.0002280838 0.01445710  0.019678256 0.07635617
#> C3    -0.013152204  0.0029467703 0.01526048 -0.047879303 0.01339144
#> C1*C2  0.001516282 -0.0018191025 0.02286151 -0.047225558 0.05535690
#> C1*C3 -0.019992459 -0.0013159148 0.02519739 -0.061114785 0.03731931
#> C2*C3  0.029377180 -0.0033125463 0.02019137 -0.006645643 0.07587689
Sobol4R::autoplot(sob_cov_single)

Order 1 and Total via sensitivity::sobol2007()

sob_cov_qoi <- sobol4r_qoi_indices(
  model = sobol_g2_with_covariate_noise,
  X1    = X1_cov,
  X2    = X2_cov,
  nboot = 50, 
  type = "sobol2007")
print(sob_cov_qoi)
#> 
#> Call:
#> sensitivity::sobol2007(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#> 
#> Model runs: 50000 
#> 
#> First order indices:
#>        original          bias   std. error     min. c.i.    max. c.i.
#> C1 0.0003628503 -4.418472e-05 0.0002554395 -0.0001224899 0.0008875878
#> C2 0.0001646244  6.080073e-07 0.0001352320 -0.0001857294 0.0004557450
#> C3 0.9961673645  8.634919e-04 0.0198365066  0.9575067469 1.0521474300
#> 
#> Total indices:
#>        original          bias   std. error     min. c.i.    max. c.i.
#> C1 0.0006914089 -5.703669e-05 0.0002709640  0.0002575406 0.0012294616
#> C2 0.0000394737  2.425451e-05 0.0001823106 -0.0005339253 0.0002984852
#> C3 1.0033002332  1.159900e-03 0.0119244876  0.9775140354 1.0294582460
Sobol4R::autoplot(sob_cov_qoi)

Conclusion

This vignette shows how Sobol4R can be used to study the impact of randomness in the model output on Sobol indices. More advanced examples, including models with random distributional parameters, are presented in a separate vignette.