R/YTplsRglm.R
nbcomp.bootplsRglm.Rd
Provides a wrapper for the bootstrap function boot
from the
boot
R package.
Implements non-parametric bootstraps for PLS
Generalized Linear Regression models by (Y,T) resampling to select the
number of components.
nbcomp.bootplsRglm( object, typeboot = "boot_comp", R = 250, statistic = coefs.plsRglm.CSim, sim = "ordinary", stype = "i", stabvalue = 1e+06, ... )
object | An object of class |
---|---|
typeboot | The type of bootstrap. ( |
R | The number of bootstrap replicates. Usually this will be a single
positive integer. For importance resampling, some resamples may use one set
of weights and others use a different set of weights. In this case |
statistic | A function which when applied to data returns a vector
containing the statistic(s) of interest. |
sim | A character string indicating the type of simulation required.
Possible values are |
stype | A character string indicating what the second argument of
|
stabvalue | A value to hard threshold bootstrap estimates computed from atypical resamplings. Especially useful for Generalized Linear Models. |
... | Other named arguments for |
An object of class "boot"
. See the Value part of the help of
the function boot
.
More details on bootstrap techniques are available in the help of the
boot
function.
A new bootstrap-based stopping criterion in PLS component construction,
J. Magnanensi, M. Maumy-Bertrand, N. Meyer and F. Bertrand (2016), in The Multiple Facets of Partial Least Squares and Related Methods,
doi: 10.1007/978-3-319-40643-5_18
A new universal resample-stable bootstrap-based stopping criterion for PLS component construction,
J. Magnanensi, F. Bertrand, M. Maumy-Bertrand and N. Meyer, (2017), Statistics and Computing, 27, 757–774.
doi: 10.1007/s11222-016-9651-4
New developments in Sparse PLS regression, J. Magnanensi, M. Maumy-Bertrand,
N. Meyer and F. Bertrand, (2021), Frontiers in Applied Mathematics and Statistics,
doi: 10.3389/fams.2021.693126
.
Jérémy Magnanensi, Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
set.seed(314) library(plsRglm) data(aze_compl, package="plsRglm") Xaze_compl<-aze_compl[,2:34] yaze_compl<-aze_compl$y dataset <- cbind(y=yaze_compl,Xaze_compl) modplsglm <- plsRglm::plsRglm(y~.,data=dataset,10,modele="pls-glm-family", family = binomial)#> ____************************************************____#> Error in is.data.frame(data): objet 'dataset' introuvablecomp_aze_compl.bootYT <- nbcomp.bootplsRglm(modplsglm, R=250)#> Error in nbcomp.bootplsRglm(modplsglm, R = 250): objet 'modplsglm' introuvable#> Error in boxplots.bootpls(comp_aze_compl.bootYT): objet 'comp_aze_compl.bootYT' introuvable#> Error in confints.bootpls(comp_aze_compl.bootYT): objet 'comp_aze_compl.bootYT' introuvable#> Error in confints.bootpls(comp_aze_compl.bootYT): objet 'comp_aze_compl.bootYT' introuvablecomp_aze_compl.permYT <- nbcomp.bootplsRglm(modplsglm, R=250, sim="permutation")#> Error in nbcomp.bootplsRglm(modplsglm, R = 250, sim = "permutation"): objet 'modplsglm' introuvable#> Error in boxplots.bootpls(comp_aze_compl.permYT): objet 'comp_aze_compl.permYT' introuvable#> Error in confints.bootpls(comp_aze_compl.permYT, typeBCa = FALSE): objet 'comp_aze_compl.permYT' introuvable#> Error in confints.bootpls(comp_aze_compl.permYT, typeBCa = FALSE): objet 'comp_aze_compl.permYT' introuvable